

Chemistry

Preliminary Course
Final Examination • 2005

General Instructions

- Reading time - 5 minutes
- Working time - 50 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A Data Sheet and a Periodic Table are provided at the back of this paper and may be removed for convenience
- Write your Student Number at the top of this page

Total Marks - 35

Part A - 9 marks

- Attempt Questions 1-9
- Allow about 10 minutes for this part

Part B - 26 marks

- Attempt Questions 10-19
- Allow about 40 minutes for this part

Part A - 9 marks

Attempt Questions 1 - 9
Allow about 10 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) $2 \quad$ (B) 6
(C) 8
(D) 9
$A \bigcirc B$
B
$\mathrm{c} \bigcirc$
D 0

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

- B

C \square D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

1 Study the reaction... $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
Which of the statements cannot apply to this reaction?
(A) One gram of H_{2} reacts with one gram of Cl_{2} to produce 2 grams of HCl .
(B) One molecule of H_{2} reacts with one molecule of Cl_{2} to produce 2 molecules of HCl .
(C) One litre of H_{2} reacts with one litre of Cl_{2} to produce 2 litres of HCl at constant conditions.
(D) One mole of H_{2} reacts with one mole of Cl_{2} to produce 2 moles of HCl .

2 Which of the production sequences shows the extraction of copper from its ore to 99.9% pure copper?
(A) forth flotation \rightarrow crushing and grinding \rightarrow smelting \rightarrow electrolysis
(B) crushing and grinding \rightarrow froth flotation \rightarrow smelting \rightarrow electrolysis
(C) crushing and grinding \rightarrow smelting \rightarrow froth flotation \rightarrow electrolysis
(D) smelting \rightarrow crushing and grinding \rightarrow froth flotation \rightarrow electrolysis

3 Which of the following may not be a consequence of thermal pollution in water?
(A) Reduction in dissolved oxygen.
(B) Disruption of aquatic organisms breeding cycles.
(C) Out of season migration of aquatic fauna.
(D) Decrease in salt concentration.
$4 \quad$ At 100 kPa and $25^{\circ} \mathrm{C}, 4$ litres of oxygen gas contain 1×10^{21} molecules. Which of these gas samples also contains 1×10^{21} molecules under the same conditions?
(A) 1 L of NH_{3}
(B) 2 L of Cl_{2}
(C) 4 L of CO_{2}
(D) 8 L of He

5 To which reaction can Gay-Lassac's law be applied?
(A) $\quad 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{\text {(g) }}$
(B) $\quad 2 \mathrm{H}_{2} \mathrm{O}_{\text {(l) }} \rightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2}$ (g)
(C) $\quad 2 \mathrm{H}_{2} \mathrm{O}_{\text {(1) }}+2 \mathrm{Na}{ }_{\text {(s) }} \rightarrow 2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+2 \mathrm{OH}^{-}{ }_{(\text {aq) }}+\mathrm{H}_{2}(\mathrm{~g})$
(D) $\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

6 Which property accounts for the moderate viscosity of water?
(A) Specific heat capacity
(B) Hydrogen bonding
(C) Density
(D) Boiling point

7 Metals $\mathrm{X}, \mathrm{M}, \mathrm{Z}$ and D are all very useful metals. The table shows selected properties of the metals...

Property	X	M	Z	D
Ionisation energy ($\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$	584	751	896	766
Percentage Abundance in Earth's Crust	8	0.07	0.00001	0.07

Use the data to list the metals according to increasing market price.
(A) X $<$ M $<$ D $<$ Z
(B) D $<$ X $<$ Z $<$ M
(C) $\mathrm{X}<\mathrm{Z}<$ M $<$ D
(D) Z $<$ D $<$ M $<$ X

Answer Questions 8 and 9 using this reaction pathway diagram...

8 Which statement correctly describes this reaction?
(A) The reaction is endothermic and the surroundings will become cooler.
(B) The reaction is exothermic and the surroundings will become cooler.
(C) The reaction is endothermic and the surroundings will become warmer.
(D) The reaction is exothermic and the surroundings will become warmer.

9 Which statement is true if a catalyst is added to the system?
(A) $\Delta \mathrm{H}$ remains constant and the activation energy increases.
(B) Both $\Delta \mathrm{H}$ and activation energy decrease.
(C) $\Delta \mathrm{H}$ remains constant and the activation energy decreases.
(D) Both $\Delta \mathrm{H}$ and activation energy remain constant.

Part B - 26 marks

Attempt Questions 10 - 19
Allow about 40 minutes for this part

- Show all relevant working in questions involving calculations.

Question 10 (3 marks)

Air bags have saved thousands of lives and are now commonly fitted in new cars. An air bag inflates very rapidly by producing nitrogen gas from the decomposition of 100 grams of sodium azide...

$$
2 \mathrm{NaN}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}
$$

(a) Calculate the moles of sodium azide originally in the air bag. (1 mark)
\qquad
\qquad
\qquad
(b) Calculate the moles of nitrogen produced and the resultant volume at 100 kPa and $25^{\circ} \mathrm{C} . \quad$ (2 marks)

Question 11 (3 marks)

Xenon tetrafluoride is an unstable compound which self-decomposes...

$$
\mathrm{XeF}_{4(\mathrm{~s})} \rightarrow \mathrm{Xe}_{(\mathrm{g})}+2 \mathrm{~F}_{2(\mathrm{~g})}
$$

The graph shows the decomposition of a pure, 4 mole sample of XeF_{4} over a period of 60 days.

(a) Calculate the number of moles of XeF_{4} which has decomposed after 16 days. (1 mark)
(b) On which day are there equal moles of reactant and products present? (1 mark)
\qquad
(c) Calculate the mass of F_{2} present at 40 days. (1 mark)
\qquad
\qquad

Question 12 (2 marks)

Iron will react with hydrochloric acid and appear to "dissolve" ...

$$
\mathrm{Fe}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{FeCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Ken Chemiski places a 2.51 g iron nail in a beaker and prepares some dilute, $1.00 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$.

Calculate the volume of acid required to fully react with the nail.
\qquad
\qquad
\qquad

Question 13 (3 marks)

Héloïse prepares some beautiful golden lead(II) iodide crystals by this precipitation reaction...

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{KI}_{(\mathrm{aq})} \rightarrow \mathrm{PbI}_{2(\mathrm{~s})}+\mathrm{KNO}_{3(\mathrm{aq})}
$$

She reacts 25.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ potassium iodide with excess lead(II) nitrate solution.
(a) Calculate the moles of lead(II) nitrate which reacted. (2 marks)
\qquad
\qquad
\qquad
(b) Calculate the mass of PbI_{2} produced. (1 mark)

Question 14 (3 marks)

In your studies, you performed a practical investigation to observe the effect of temperature on reaction rate. Describe your experiment, including the observed results.

Question 15 (2 marks)

(a) Identify one pollutant produced by the incomplete combustion of an organic compound. (1 mark)
(b) Write a chemical equation to show the incomplete combustion of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$. ($\mathbf{1}$ mark)

Question 16 (2 marks)

The diagram shows liquid methanol, $\mathrm{CH}_{3} \mathrm{OH}$, being poured into a beaker of water.

Use the symbols,
$\mathrm{H}^{-\mathrm{O}} \mathrm{H}$ for water and

for methanol to draw a diagram that illustrates the strongest intermolecular forces in the solution.

Question 17 (3 marks)

Outline the method required to prepare a 250 mL solution of $0.102 \mathrm{~mol} \mathrm{~L}^{-1}$ strontium chloride.

- Write your answer in numbered sequential steps (1, 2, 3...).
\qquad

Question 18 (2 marks)

Tincture of iodine, a common antiseptic, is a $2 \%(\mathrm{w} / \mathrm{w})$ solution of iodine in ethanol.
(a) Calculate the mass of iodine crystals is required to prepare a 250 g sample of tincture of iodine? (1 mark)
\qquad
\qquad
\qquad
(b) Calculate the mass of ethanol is required? (1 mark)

Question 19 (3 marks)

In an experiment to measure the density of water at $28^{\circ} \mathrm{C}$, an empty 100 mL measuring cylinder was found to have a mass of 150.5 grams. When 80.3 mL of water was poured into the cylinder, the mass of the cylinder and contents was 230.5 grams.
(a) Calculate the density of water at $28^{\circ} \mathrm{C}$ based on the data. ($\mathbf{1}$ mark)
(b) When the measuring cylinder and water was sealed and kept inside a freezer overnight at $-10^{\circ} \mathrm{C}$, the volume reading increased to 85.9 mL . Explain this observation. (1 mark)
\qquad
\qquad
\qquad
\qquad
(c) When water freezes it expands. Why is this process important in Nature? (1 mark)

Chemistry

DATA SHEET

Some useful formulae
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T$
Some standard potentials

$\mathrm{K}^{+4} \div \mathrm{e}^{-}$	$\stackrel{ }{\sim}$	$\underline{M}(\mathrm{~s})$	-2.94 V
$\mathrm{Ba} \mathrm{a}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(\mathrm{s})$	$-2.91 \mathrm{~V}$
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\text { m }}{\text { \% }}$	$\mathrm{Ca}(s)$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	(was	$\mathrm{Na}(\mathrm{s})$	-2.71 V
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	श"	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{\text {m }}$	से	Al(s)	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\square}{\square}$	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{2}$	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Za}^{2+}+2 \mathrm{e}^{\prime \prime}$	"mix	$\mathrm{Zn}(\mathrm{s})$	-0.76 V
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\#*	$\mathrm{Fe}(\mathrm{s})$	-0.44 V
$\mathrm{Na}^{2+}+2 \mathrm{e}^{-}$	श"	$\mathrm{Ni}(s)$	-0.24V
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\geqslant	Sn(s)	-0.14V
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	से	$\mathrm{Pb}(\mathrm{s})$	$-0.13 \mathrm{~V}$
$\mathrm{H}^{+}+\mathrm{e}^{-}$	ए2	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{\prime \prime}$	\cdots	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	$\stackrel{ }{\star}$	$2 \mathrm{OH}{ }^{\prime \prime}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{c}^{-}$	एल	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{H}_{2}(s)+\mathrm{e}^{\prime \prime}$	(-m	T	0.54 V
$\frac{1}{2} \mathrm{H}_{2}(a q)+\mathrm{e}^{-\cdots}$	एग	I'	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\Longleftrightarrow	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{2}$	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Br}{ }^{-}$	108 V
$\frac{3}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{\prime \prime}$	\%	Br^{-}	1.10 V
${ }_{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-1}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-\prime}$	$\stackrel{\text { a }}{\sim}$	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{c}^{-}$	$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}\left(\mathrm{a}_{\text {O }}\right)+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{2}$	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	F\%	$\mathrm{Mn}^{2 *}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(g)+e^{-}$	\rightleftharpoons	F"'	2.89 V

Aylward and Findiay, SY Chemicat Data (5thedition) is the principal source of ata for his examination paper. Some data may have been modified for examination parposes.

$\begin{gathered} \hline \text { unpouame7 } \\ {[1 \quad z 9 z]} \\ \text { l7 } \\ \text { ع0l } \\ \hline \end{gathered}$			un！uma， ［ \quad ㄴLSZ］ w_{H} 001	$\begin{gathered} \text { unnupursurg } \\ \text { [I'zSZ] } \\ \text { Sg } \\ 66 \\ \hline \end{gathered}$	$\begin{gathered} \text { un!uop!py } \\ \text { [I I ISZ] } \\ \ddagger \supset \\ 86 \end{gathered}$			 ［ $1 \cdot \varepsilon \downarrow z]$睹 §6		$\begin{gathered} \hline \text { unuundon } \\ {[0 \angle \varepsilon Z Z]} \\ \mathrm{d}_{\mathrm{N}} \\ \varepsilon 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { unpuen } \\ 0.8 \varepsilon z \\ \Omega \\ \boxed{ } 6 \\ \hline \end{gathered}$		$\begin{gathered} \text { unyoul } \\ 0 \imath \varepsilon \varepsilon \\ \text { प.L } \\ 06 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { unuupv } \\ {[0 . \angle Z Z]} \\ \supset \forall \\ 68 \\ \hline \end{gathered}$
sэр！̣！̣ว														
แn！${ }^{\text {ann }}$	un！quank	un！${ }^{\text {n }}$ ¢	шп！q9	un！ul｜${ }^{\text {a }}$	un！sodssía	un！̣ª	un！u！ppeg	undoung	unurues	un！upauodd	un！uкроол	wnmufroos ${ }^{\text {d }}$		
0．${ }^{\circ}$ LI	$0 \cdot \varepsilon L I$	6891	£＇L91	$6+91$	s\％29	6．8SI	$\varepsilon \cdot L S I$	0．ZSI	－ 0 OS	［ $6^{\circ}+t \mathrm{I}$ ］	でもtI	6.07 I	Ioti	шпииериет $6.8 \varepsilon I$
n7	9λ	m_{L}	曻	O^{H}	${ }^{1} \mathrm{G}$	q．L	po	ng	u^{4}	u_{d}	PN	${ }^{1}{ }_{\text {d }}$	วว	6
IL	OL	69	89	L9	99	S9	t9	$\varepsilon 9$	29	19	${ }_{0}$	6 S	85	LS

Chem 11
 Final Exam - 2005

ANSWERS

$\mathbf{1}$	\mathbf{A}
$\mathbf{2}$	\mathbf{B}
$\mathbf{3}$	\mathbf{D}

4	C
5	A
6	B

$\mathbf{7}$	A
$\mathbf{8}$	D
$\mathbf{9}$	C

(a) $\mathrm{n}=\mathrm{m} \div \mathrm{M}=100 \mathrm{~g} \div 65.02 \mathrm{~g} \mathrm{~mol}^{-1}=1.54 \mathrm{~mol} \quad$ (1 mark)
(b) \quad moles $\mathrm{N}_{2}=11 / 2$ moles $\mathrm{NaN}_{3}=11 / 2 \times 1.54 \mathrm{~mol}=2.31 \mathrm{~mol} \quad$ (1 mark) volume $\mathrm{N}_{2}=\mathrm{n} \times 24.79 \mathrm{~L} \mathrm{~mol}^{-1}=2.31 \mathrm{~mol} \times 24.79 \mathrm{~L} \mathrm{~mol}^{-1}=57.2 \mathrm{~L} \quad$ (1 mark)

11 (a) 4 moles initially - 2.3 moles remaining @ Day $16=1.7$ moles decomposed (1 mark)
(b) At Day 8, 3 moles of XeF_{4} remain and 1 mole of XeF_{4} has decomposed yielding 1 mole of Xe and 2 moles of F_{2}. (1 mark)
(c) At Day 40, 3 moles of XeF_{4} has decomposed, yielding 6 moles of F_{2}.
$\mathrm{n}=\mathrm{m} \div \mathrm{M} ; \mathrm{m}=\mathrm{n} \times \mathrm{M}=6 \mathrm{~mol} \times 38.00 \mathrm{~g} \mathrm{~mol}^{-1}=228 \mathrm{~g} \quad$ (1 mark)

12 moles $\mathrm{Fe}=\mathrm{m} \div \mathrm{M}=2.51 \mathrm{~g} \div 55.85 \mathrm{~g} \mathrm{~mol}^{-1}=0.0449 \mathrm{~mol}$ moles $\mathrm{HCl}=2 \times$ moles $\mathrm{Fe}=2 \times 0.0449 \mathrm{~mol}=0.0899 \mathrm{~mol} \quad(1 \mathrm{mark})$ volume $\mathrm{HCl}=\mathrm{n} \div \mathrm{c}=0.0899 \mathrm{~mol} \div 1.00 \mathrm{~mol} \mathrm{~L}^{-1}=0.0899 \mathrm{~L} \quad$ (1 mark)

13 (a) moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1 / 2 \times$ moles KI $=1 / 2 \times \mathrm{c} \times \mathrm{V}=1 / 2 \times 0.100 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.0250 \mathrm{~L}$
moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=\mathbf{0 . 0 0 1 2 5}$ mol (1 mark + 1 mark)
(b) \quad moles $\mathrm{PbI}_{2}=1 / 2$ moles KI $=1 / 2 \times 0.00250 \mathrm{~mol}=0.00125 \mathrm{~mol}$ mass $\mathrm{PbI}_{2}=\mathrm{n} \times \mathrm{M}=0.00125 \mathrm{~mol} \times 461 \mathrm{~g} \mathrm{~mol}^{-1}=0.576 \mathrm{~g} \quad$ (1 mark)

14 Sodium thiosulfate was added to hydrochloric acid in a conical flask at various temperatures. The chemicals react to form a precipitate. The time was recorded for how long it took for the precipitate to obscure a cross drawn on the bottom of the conical flask. As the flask was heated, the time taken for the precipitate to obscure the cross became shorter.

- Detailed description and observed results. 3 marks

Detailed description of valid experiment. 2 marks Simple description of valid experiment. 1 mark
(a) Carbon or carbon monoxide or carbon dioxide (1 mark)
(b) e.g. $\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad$ (1 mark)

- No states required.

16 1111 indicates hydrogen bonding

Hydrogen bonding shown using dashes or any suitable representation (but not solid lines) between correct atoms. (1 mark)

Written label indicating the hydrogen bond location. (1 mark)

1. Calculate the mass of strontium chloride required to be weighed.

Mass of strontium chloride $=0.250 \mathrm{~L} \times 0.102 \mathrm{~mol} \mathrm{~L}^{-1} \times[87.62 \times 2(35.45)] \mathrm{g} \mathrm{mol}^{-1}=4.04 \mathrm{~g}$
2. Weigh the required quantity and dissolve in the minimum amount of water.
3. Quantitatively transfer the solution to a 250 mL volumetric flask and add enough water until the lower meniscus is just touching the fill line.
4. With the stopper on and held firmly in place, invert the volumetric flask several times to mix the solution.

- Steps 1 and 2 are credited with 1 mark. Numbers 3 and 4 are 1 mark each.
(a) mass of iodine $=0.02 \times 250=5 \mathrm{~g} \quad$ (1 mark)
(b) mass of ethanol $=$ mass of solution - mass of solute $=245 g$ (1 mark)
(a) Density $=$ mass $\mathrm{H}_{2} \mathrm{O} \div$ volume $\mathrm{H}_{2} \mathrm{O}=(230.5 \mathrm{~g}-150.5 \mathrm{~g}) \div 80.3 \mathrm{~mL}=\mathbf{0 . 9 9 6} \boldsymbol{g} \boldsymbol{m} \boldsymbol{L}^{-1}$
(b) $A t-10^{\circ} \mathrm{C}$, water freezes to a structure where each molecule hydrogen bonds with four other molecules (tetrahedrally configured) creating a regular open structure which occupies more space, hence the greater volume and lower density. (1 mark)
(c) Ice forms on the surface of a lake (etc.) instead of the bottom allowing life to exist under the ice during the winter.

OR

Ice is an agent of physical weathering for rocks. Successive freezing and thawing can crack open the surface of hard rock forming a component of soil. (1 mark)

