Sydney Grammar School

Physics

Thursday $28{ }^{\text {th }}$ August 8.40AM

General Instructions

- Working time -2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet, Formula Sheet and Periodic Table are provided at the back of this paper
- Write your name at the top of the Multiple Choice Answer Sheet \& all pages of Part B
- Hand in your Multiple Choice Sheet and all of Part B in one bundle. (Do not staple together)

2014
 FORM V
 EXAMINATION

Working Time: 2 hours

Total marks (97)

This paper has two parts: Part A and Part B.

Part A

Total marks (14)

- Attempt ALL Questions
- Allow about 20 minutes for this Part

Part B

Total marks (83)

- Attempt ALL Questions
- Allow about 1 hour 40 minutes for this Part

CHECKLIST	
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	

1 - PCK	3 - AAH	5 - AAH	7 - PCK
2 - MTK	4 - SRW	6 - MRW	

EXAMINERS:

MRW/AAH/PCK/SRW/MTK

1 The cathode ray oscilloscope is a device that displays a graph of voltage (on the y -axis) versus time (on the x axis). In the diagram below, a cathode ray oscilloscope is used to measure the output of a microphone.

The screen scale is set to the following settings:-

- the y-scale is 2 V per division
- the x -scale is $5 \times 10^{-4} \mathrm{~s} /$ division.

The frequency of the sound is closest to:
(A) $1.4 \times 10^{-3} \mathrm{~Hz}$
(B) 340 Hz
(C) 357 Hz
(D) 714 Hz

2 Which of the following choices correctly lists components of the electromagnetic spectrum from the shortest to longest wavelength respectively?
(A) Infrared, visible light, ultraviolet
(B) Infrared, microwave, radio waves
(C) Infrared, visible light, X-rays
(D) Gamma rays, ultraviolet, X-rays

3 When a water wave travels from deep water to shallow water, the wave slows down.

This means:
(A) frequency of the wave decreases and wavelength remains the same.
(B) both wavelength and frequency decrease.
(C) wavelength of the wave decreases and frequency remains the same.
(D) wavelength and frequency remain the same.

4 The time taken for an object dropped from rest to fall vertically through 16 m is 2.0 s . Based on these measurements, what is the best estimate for the magnitude of the acceleration of the object?
(A) $4.0 \mathrm{~ms}^{-2}$
(B) $8.0 \mathrm{~ms}^{-2}$
(C) $9.8 \mathrm{~ms}^{-2}$
(D) $10 \mathrm{~ms}^{-2}$

5 The graph below shows how the displacement, d, of an object varies with time, t. The tangent to the curve at time t_{1} is also shown.

Which of the following gives the instantaneous speed of the object at time t_{1} ?
(A) The gradient at P
(B) The shaded area
(C) $\frac{1}{\text { gradient at } \mathrm{P}}$
(D) $\frac{d_{1}}{t_{1}}$

6 A person of weight 600 N is standing on a set of bathroom scales in a lift. The lift is accelerating upwards at $1.0 \mathrm{~ms}^{-2}$.
The reading on the scales is closest to:-
(A) 0 N
(B) 540 N
(C) 600 N
(D) 660 N

7 Two objects undergo an inelastic collision in which no external forces are acting.

Which of the following describes the Conservation of Momentum and the Conservation of Kinetic Energy of the system?

	Total Momentum	Total Kinetic Energy
(A)	conserved	not conserved
(B)	conserved	conserved
(C)	not conserved	not conserved
(D)	not conserved	conserved

8 The diagram below depicts the motion of a planet around the Sun.

What is the ratio of the area on the left, P , to the area on the right, Q ?
(A) $1: 1$
(B) $1.5: 1$
(C) $2: 1$
(D) $\quad \pi: 1$

9 Who was the scientist that introduced the concept of "epicycles" into a model of the Universe?
(A) Newton
(B) Copernicus
(C) Ptolemy
(D) Kepler

10 Why is Copernicus's model of the Solar System now considered wrong?
(A) He placed the Earth at the centre of the Solar System.
(B) He had nine planets rather than eight planets.
(C) He could not explain the phases of Venus.
(D) He showed the planets orbiting the Sun in circles.

11 The electrical force, F, between two small identical point charges is measured at different distances of separation, r.
Which of the following graphs correctly shows how the electrical force, F, varies with separation, r ?
(A)

(B)

(C)

(D)

12 When drawing magnetic field lines, the stronger the magnetic field:
(A) the closer together the magnetic field lines are.
(B) the more nearly parallel the magnetic field lines are.
(C) the further apart the magnetic field lines are.
(D) the more divergent the magnetic field lines are.

13 A uniform electric field exists between two parallel plates separated by 0.20 m . A force of $4.5 \times 10^{-9} \mathrm{~N}$ acts on a particle of charge $2.5 \times 10^{-12} \mathrm{C}$ between the plates.
What is the potential difference between the plates?
(A) 360 V
(B) 450 V
(C) 1800 V
(D) 4500 V

14 Which of the following arrangements of three identical light globes connected to the same battery would give the highest reading on the ammeter, A?
(A)

(B)

(C)

(D)

Part B

Total marks (83)
Attempt ALL Questions
Allow about 1 hour and 40 minutes for this Part

Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 15 (2 marks)
Marks

The intensity of a point source of light is $10 \mathrm{Wm}^{-2}$ at a distance of 2 m .
Calculate the intensity at a distance of 5 m away from the point source.
\qquad
\qquad
\qquad
\qquad

The following diagram shows the displacement versus distance graph for a transverse wave moving to the right at two instants of time: $t=0.0 \mathrm{~s}$ and 0.01 s later.

(a) Use the graphs above to determine:-
(i) the amplitude of the wave.
(ii) the wavelength of the wave.
\qquad

Question 16 continued on next page.

(iii) the speed of the wave.
(iv) the frequency of the wave.
(v) the period of the wave.
(vi) the direction of motion of the particle at point W between $\mathrm{t}=0.0 \mathrm{~s}$ and $\mathrm{t}=0.01 \mathrm{~s}$.

Question 17 (5 marks)
A light ray is shone from air $\left(\mathrm{n}_{\text {air }}=1.0\right)$ through glass ($\mathrm{n}_{\text {glass }}=1.49$) to water ($\mathrm{n}_{\text {water }}=1.33$). The angle of incidence is 35°

(a) Calculate the angle of refraction, θ_{2}, as the light passes from air to glass.
\qquad
\qquad
\qquad
\qquad
(b) Calculate the angle of refraction into the water θ_{3}, as the light passes from glass to water.
\qquad
\qquad
\qquad
\qquad

Question 17 continued on next page.

(c) Calculate the speed of light in the water. 1
\qquad
\qquad
\qquad

Class

Question 18 (7 marks)
Marks
The refractive index of Medium X varies depending on the wavelength of the light entering it. The graph below shows how the angle of refraction varies depending on the angle of incidence when blue and red light travel from Medium X to air.

(a) Use the graph to determine the critical angle for blue light in Medium X.
\qquad

Question 18 continued on next page.

Class
Name

(b) Determine the refractive index for blue light in Medium X.
\qquad
\qquad
\qquad
\qquad
(c) What would the angle of incidence have to be for there to be a 16 degree difference in the angle of refraction between blue and red light when the light travels from Medium X to air?
(d) Identify which colour of light slows down the most in Medium X.

Explain your answer.
\qquad
\qquad
\qquad
\qquad

Class

Name

Question 19 (2 marks)
The following graph shows a medium with 2 waves moving through it simultaneously.

Draw the combined displacement of the medium as a result of these 2 waves.
2

Ganymede and Callisto both orbit the planet Jupiter.

Moon	Period (days)	Mean Distance from Jupiter (million $\mathbf{k m}$)
Callisto	16.69	1.88
Ganymede	$?$	1.07

Use the data in the above table to determine the period of Ganymede's orbit around Jupiter.
\qquad
\qquad
\qquad
\qquad

(a) An element of mass number 241 and atomic number 95 undergoes an alpha decay.

Write a nuclear decay equation using correct chemical symbols for this reaction.
\qquad
(b) Carbon-14 undergoes beta minus decay.

Write a nuclear decay equation for this reaction.
(c) (i) The decay graph for carbon-14 is depicted below.

Using this graph, determine the half-life for carbon-14.
(ii) If a piece of wood is measured to have only $1 / 16$ of its original carbon-14 remaining, how old is the piece of wood?
\qquad
\qquad
\qquad
\qquad

Consider the following diagram.

Explain why gamma rays are significantly more penetrating than alpha particles.
\qquad
\qquad
\qquad
\qquad
\qquad

With the aid of labelled diagrams, show how the geocentric and heliocentric models of the Universe explain the retrograde motion of Mars.
\qquad

Name

A racing car is attempting to break the 'standing kilometre' time record. From rest, when the starting light turns green, the car accelerates at its maximum rate and crosses the finish line 40 s later on the race track travelling at $180 \mathrm{kmh}^{-1}$.
(a) Calculate the final speed of the racing car in ms^{-1}.
\qquad
\qquad
(b) Calculate the acceleration of the racing car for the 40 s .
\qquad
\qquad
(c) Calculate the average speed of the racing car in for the 40 s .
\qquad
\qquad
(d) Immediately after crossing the finish line, the racing car applied the brakes. It took 90 s for the car to come to rest. Assuming uniform deceleration, calculate the distance travelled from the finishing line until the racing car came to rest.
\qquad
\qquad
\qquad
\qquad

Consider the two blocks shown in the following diagram.

The blocks are connected by a light, inextensible string over a frictionless pulley. The 2.0 kg block is resting on a smooth horizontal surface.

Calculate the magnitude of the tension force in the string at X .
\qquad
\qquad
\qquad
\qquad

In an experiment, an air-rifle pellet is fired into a clay block that rests on a horizontal table.

(not to scale)

The air-rifle pellet remains inside the clay block after impact. As a result of the collision, the clay block slides along the table in a straight line and comes to rest. Further data related to the experiment are given below.

Mass of air-rifle pellet	$=2.0 \mathrm{~g}$
Mass of clay block	$=56 \mathrm{~g}$
Velocity of pellet just before impact	$=140 \mathrm{~ms}^{-1}$
Stopping distance of clay block	$=2.8 \mathrm{~m}$

(a) Calculate the speed of the clay block immediately after the air-rifle pellet strikes it.
\qquad
\qquad
\qquad
\qquad

Question 26 continued on next page.

(b) Calculate the magnitude of the average force of friction that the table exerts on the clay block while it is coming to rest.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A ball is suspended from a ceiling by a string 7.5 m long. The ball is kicked horizontally and rises to a maximum height of 6.0 m as shown in the following diagram.

(a) Ignoring air resistance, calculate the initial speed of the ball immediately after it is kicked.
\qquad
\qquad
\qquad
\qquad
(b) The mass of the ball is 0.550 kg and the impact time of the kicker's foot with the ball is 0.15 s .

Calculate the magnitude of the average force exerted on the ball by the kick.
\qquad
\qquad
\qquad
\qquad

Class

Name

Question 28 (6 marks)
Consider the circuit shown in the diagram below.

(a) Determine the total resistance of the circuit.
\qquad
\qquad
(b) Determine the total current in the circuit.
\qquad
\qquad
(c) Determine the reading on the voltmeter in the circuit.
\qquad
\qquad
(d) Determine the reading on the ammeter in the circuit.
\qquad
\qquad
\qquad

A house light is used to convert electrical energy into light energy. The house light draws 6 A of current when connected to a 240 V power supply.
(a) Calculate the resistance of the house light.
\qquad
\qquad
(b) Calculate the number of electrons flowing per second through the house light.
\qquad
\qquad
\qquad
\qquad
(c) Briefly explain what will happen to the power output if a higher resistance house light is used with the 240 V power supply.
\qquad
\qquad
\qquad
\qquad

Draw the magnetic field surrounding a wire carrying conventional current into the page.

Double insulation, fuses and circuit breakers are three safety features commonly used in electrical circuits within the home.

Choose one of these features and briefly describe the general principle of the named feature.

Name of feature : \qquad

Description : \qquad
\qquad
\qquad
\qquad

Consider the following circuit.

A current of 0.5 A flows through resistor X.
(a) Calculate the current through the 6Ω resistor.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the value of the resistor labelled X .
\qquad
\qquad
\qquad
\qquad

The diagram below shows two charges, Q_{A} and Q_{B} fixed in place and separated by a distance of $250 \mathrm{~m} . \mathrm{Q}_{\mathrm{A}}$ has a charge of +6.0 C , but the charge on Q_{B} is unknown. A third charge, of mass 50 kg and charge +2.0 C , is placed at $\mathrm{X}, 75 \mathrm{~m}$ from Q_{A}.

When it is released, the charge at X has an acceleration of $3.3 \times 10^{5} \mathrm{~ms}^{-2}$ to the right.

Calculate the charge Q_{B}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The diagram below shows two trolleys, A and B. Initially, trolley A of mass 2.0 kg has a velocity of U to the right and trolley B of mass m_{B} is at rest.

Trolleys A and B collide elastically. After the collision, trolley A has a velocity of 7U/9 to the right.

Calculate the mass of trolley B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A ball is thrown upwards at a speed U from the top of a high building as shown in the diagram below.

The ball passes a point X 3.25 s after it was thrown, and a point Y , which is 8.0 m below $\mathrm{X}, 0.30 \mathrm{~s}$ later.

Calculate the initial speed, U , of the ball.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics

Data Sheet

Charge on the electron, q_{e}	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of neutron, m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton, m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Speed of sound in air	$340 \mathrm{~m} \mathrm{~s}^{-1}$
Earth's gravitational acceleration, g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of Earth, R_{E}	$6.4 \times 10^{6} \mathrm{~m}$
Speed of light, c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic force constant, $\left(k \equiv \frac{\mu_{0}}{2 \pi}\right)$	$2 \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
Universal gravitational constant, G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Mass of Earth	$6.0 \times 10^{24} \mathrm{~kg}$
Planck's constant, h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Rydberg's constant, R (hydrogen)	$1.097 \times 10^{7} \mathrm{~m}^{-1}$
Atomic mass unit, u	$\begin{aligned} & 1.661 \times 10^{-27} \mathrm{~kg} \\ & 931.5 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
1 eV	$1.602 \times 10^{-19} \mathrm{~J}$
Density of water, ρ	$1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Specific heat capacity of water	$4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Coulomb's constant, k	$9.0 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$

FORMULAE SHEET FORM V ONLY

$$
\begin{aligned}
& v_{a v}=\frac{\Delta r}{\Delta t} \\
& a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t} \\
& I=\frac{Q}{t} \\
& v=u+a t \\
& R=\frac{V}{I} \\
& v^{2}=u^{2}+2 a r \quad P=V I \\
& r=u t+\frac{1}{2} a t^{2} \\
& \text { Energy }=\text { VIt } \\
& \sum F=m a \\
& v=f \lambda \\
& F=\frac{m v^{2}}{r} \\
& f=\frac{1}{T} \\
& E_{k}=\frac{1}{2} m v^{2} \\
& I \propto \frac{1}{d^{2}} \\
& E_{p}=m g h \\
& \frac{v_{1}}{v_{2}}=\frac{\sin i}{\sin r} \\
& W=F r \\
& n \lambda=d \sin \theta \\
& p=m v \\
& n \lambda=\frac{d x}{L} \\
& \Delta p=F_{n} t \\
& E_{p}=-\frac{G m_{1} m_{2}}{r} \\
& F=m g \\
& \frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} \\
& E=\frac{F}{q} \\
& F=\frac{G m_{1} m_{2}}{d^{2}} \\
& E=\frac{V}{d} \\
& E=m c^{2} \\
& F=\frac{k Q_{1} Q_{2}}{d^{2}}
\end{aligned}
$$

FORMULAE SHEET

$$
\frac{F}{l}=k \frac{I_{1} I_{2}}{d} \quad d=\frac{1}{P}
$$

$$
F=B I l \sin \theta
$$

$$
M=m-5 \log \left(\frac{d}{10}\right)
$$

$$
\tau=F d
$$

$$
\tau=n B I A \cos \theta
$$

$$
\frac{I_{A}}{I_{B}}=100\left(m_{B}-m_{A}\right) / 5
$$

$$
\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}}
$$

$$
m_{1}+m_{2}=\frac{4 \pi^{2} r^{3}}{G T^{2}}
$$

$$
F=q v B \sin \theta \quad \frac{1}{\lambda}=R_{H}\left\lfloor\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right\rfloor
$$

$$
E=\frac{V}{d}
$$

$$
\lambda=\frac{h}{m v}
$$

$$
E=h f
$$

$$
A_{0}=\frac{V_{\text {out }}}{V_{\text {in }}}
$$

$$
c=f \lambda
$$

$$
\frac{V_{o u t}}{V_{i n}}=-\frac{R_{f}}{R_{i}}
$$

$$
Z=\rho v
$$

$$
\frac{I_{r}}{I_{0}}=\frac{\left[Z_{2}-Z_{1}\right]^{2}}{\left[Z_{2}+Z_{1}\right]^{2}}
$$

Surface area of a

$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \text { H.,.08 } \\ \text { Hydogen } \end{gathered}$	LE OF THE ELEMENTSKEY																$\begin{gathered} 2 \\ \begin{array}{c} 2 e \\ \text { He } \\ \text { Helium } \end{array} \end{gathered}$
$\begin{gathered} \hline \mathrm{Li} \\ \text { Li } \\ \substack{\text { 6.4itum } \\ \text { Lihium } \\ \hline} \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.012 \\ \text { Beryllium } \\ \hline \end{gathered}$							$\begin{gathered} 79 \\ \text { Au } \\ 1970 \\ \text { Gold } \\ \hline \end{gathered}$				$\begin{gathered} \hline 5 \\ \text { B } \\ 10.81 \\ \text { Boon } \\ \hline \end{gathered}$	$\underset{\substack{6 \\ 12.01 \\ \text { Carton }}}{\substack{\text { n }}}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ 14.01 \\ \text { Nitrogen } \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{8}{0} \\ 0 \\ 16.00 \\ \text { Oxygen } \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \\ \text { Fluorine } \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \\ \text { Neon } \\ \hline \end{gathered}$
$\begin{gathered} 11 \\ \text { Na } \\ 22.99 \\ \text { Sodium } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Mg} \\ 24.31 \\ \text { Magnesium } \end{gathered}$											$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \\ \text { Aluminium } \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \\ \text { Silicon } \end{gathered}$	$\begin{gathered} 15 \\ \text { P } \\ 30.97 \\ \text { Phosphons } \end{gathered}$	$\begin{gathered} 16 \\ \text { S } \\ 32.07 \\ \text { Sulfur } \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \\ \text { Chlorine } \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.95 \\ \text { Argon } \end{gathered}$
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.10 \\ \text { Poassium } \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { Ca } \\ 40.08 \\ \text { Calcum } \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { Sc } \\ 44.96 \\ \text { Scandium } \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \text { Ti } \\ 47.87 \\ \text { Thanium } \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{v} \\ 50.94 \\ \text { Vandium } \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ { }^{24} \\ 52.00 \\ \text { Chromium } \end{gathered}$	$\begin{array}{\|c} 25 \\ \mathrm{Mn} \\ 54.94 \\ \text { Manganese } \end{array}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \\ \text { Iron } \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ { }^{27} \\ 58.93 \\ \text { Coball } \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \text { Nikcel } \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \\ \text { Copper } \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \text { Zn } \\ 65.38 \\ \text { Zinc } \end{gathered}$	$\begin{gathered} 31 \\ \text { Gaa } \\ 69.72 \\ \text { Callum } \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ \text { Ge.64 } \\ \text { Cemmaium } \end{gathered}$	$\begin{gathered} 33 \\ \mathrm{As} \\ 74.92 \\ \text { Arsenic } \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \\ \text { Secenium } \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \\ \text { Bromine } \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \\ \text { Krypon } \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \\ \text { Rubium } \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.61 \\ \text { Stronium } \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.91 \\ \text { Yurium } \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \\ \text { Zirconium } \end{gathered}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ 92.91 \\ \text { Niobium } \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.96 \\ \text { Molybdenum } \end{gathered}$	$\begin{gathered} 43 \\ \mathrm{Tc} \\ \text { Tecchnetium } \end{gathered}$	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \\ 101.1 \\ \text { Ruthenium } \end{array}$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ 102.9 \\ \text { Rhodium } \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \\ \text { Palladium } \end{gathered}$	$\begin{gathered} 47 \\ \text { Ag } \\ 107.9 \\ \text { Silver } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \begin{array}{c} \mathrm{Cd} \\ 112.4 \\ \text { Cadmium } \end{array} \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \\ \text { Indium } \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ S n \\ 118.7 \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ \text { Sb } \\ 121.8 \\ \text { Animpony } \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.6 \\ \text { Tellurium } \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \\ \text { Iodine } \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ 131.3 \\ \text { Xenon } \\ \hline \end{gathered}$
$\begin{gathered} \hline 55 \\ \hline \text { Cs } \\ \text { Ceasium } \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.3 \\ \text { Banum } \end{gathered}$	57-71 Lanthanoid	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.5 \\ \text { Hadium } \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.9 \\ \text { T8nalum } \end{gathered}$	$\begin{gathered} 74 \\ \mathrm{~W} \\ \text { W } \\ \text { Thasten } \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.2 \\ \text { Rhenium } \end{gathered}$	$\begin{gathered} 76 \\ 0 \mathrm{c} \\ 190.2 \\ \text { Osmium } \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ \text { 192.2 } \\ \text { Iriduum } \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.1 \\ \text { Platioum } \\ \hline \end{gathered}$	$\begin{gathered} \hline 79 \\ \text { Au } \\ 19.0 \\ \text { Gold } \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \\ \text { Meccuy } \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ \text { T1 } \\ \text { 204.4 } \\ \text { Thalifium } \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \text { Lead } \end{gathered}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ 209.0 \\ \text { Bismuth } \end{gathered}$	$\begin{gathered} \begin{array}{c} 84 \\ \text { Po } \\ \text { Polonium } \end{array} \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ \text { Astatine } \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { Radon } \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ \text { Francium } \end{gathered}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$ Radium	89-103	104 Rf Rubererofium	$\begin{gathered} 105 \\ \mathrm{Db} \\ \text { Dubhium } \end{gathered}$	$\begin{gathered} 106 \\ \text { Scabogium } \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$ Bohrium	$\begin{gathered} 108 \\ \mathrm{Hs} \\ \text { Hassum } \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \\ \text { Meiterium } \end{gathered}$	\qquad	$\begin{array}{\|c\|} \hline 111 \\ \mathrm{Rg} \\ \text { Roentgenium } \end{array}$	$\begin{gathered} 112 \\ \text { Cn } \\ \text { Copericicum } \end{gathered}$						

Lanthanoids														
	$\begin{gathered} 58 \\ \hline \text { ce } \\ \text { cen. } \\ \text { Couim } \end{gathered}$		$\begin{gathered} 60 \\ \text { Nd } \\ \text { Nect.2. } \\ \text { Neosmime } \end{gathered}$	$\underset{\substack{61 \\ \text { Pmometimem }}}{\substack{\text { Premen }}}$	$\begin{gathered} 62 \\ \hline \text { Sm } \\ \text { s. } 50.4 \\ \text { semain } \end{gathered}$			$\begin{gathered} 65 \\ \hline \text { Tb } \\ \text { I58.9 } \\ \text { Trtrime } \end{gathered}$					$\begin{gathered} 70 \\ \text { Yb } \\ \text { Yubil } \\ \text { Yustime } \end{gathered}$	(lu
Actinoids														
${ }_{\text {Ac }}^{89}$	${ }_{\text {Th }}^{\text {Th }}$	${ }_{\text {Pa }}^{91}$	$\mathrm{U}_{\mathrm{U}}^{92}$	+ ${ }_{\text {Np }}$	${ }_{90}^{94}$	${ }_{\text {Am }}^{95}$	${ }_{C}^{96}$	${ }_{\text {Bk }}^{97}$	${ }_{C f}^{98}$	${ }_{\text {Es }}^{99}$	${ }_{\text {Fm }}^{100}$	${ }_{\text {Md }}^{101}$	${ }_{\text {No }}^{102}$	${ }_{\text {Lr }}^{103}$
Accrium	${ }_{\substack{\text { 23, } \\ \text { Trooum }}}^{2320}$	${ }_{\text {prosatioum }}^{231.0}$	${ }_{\substack{\text { and } \\ \text { Unaium }}}^{238.0}$	Neprouium	Plumium	Amencium	Cruium	Beckelium	Callonium	Emascrium	Femium	Mencescrim	Noxeximm	Uneraciom
Elements with atomic numbers 112 and above have been reported but not fully authenticated. Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.														

\square

General Instructions

- Write your class and candidate number in the space provided.
- Attempt all questions 1 - 14
- Use a blue or black pen
- Select the alternative A, B, C, or D that best answers the question.
- Fill in the response circle completely.

2014

FORM V
ANNUAL EXAMINATION

Physics Part A ANSWER SHEET

1. (A)
(B)
(C)
2. (A)

(D)
3. (A)
(B)
18
(D)
4. (A)
(D)
5.

(B) (C)

6. (A)
(B) (C)

7.
(B)
(C)(D)
8.
(D)
9. (A)
(B)

(D)
10
(A)
(B) (C)
11. (A)
(B) (C)
12.

14. (A)

Part B
Total marks (83)
Attempt ALL Questions
Allow about 1 hour and 40 minutes for this Part
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 15 (2 marks)

The intensity of a point source of light is $10 \mathrm{Wm}^{-2}$ at a distance of 2 m .
Calculate the intensity at a distance of 5 m away from the point source.

$$
\begin{aligned}
& \frac{I_{A} d_{A}^{2}=I_{B} d_{B}^{3}\left(\text { of } I \propto \frac{1}{d^{2}} \text { than } I=\frac{k}{d^{2}} i I d^{2}=\text { (indent }\right) .}{\left(I_{A}=10 W_{m^{-2}}, d_{A}=2 \mathrm{~m}\right)\left(I_{B}=?, d_{B}=5 \mathrm{~m}\right)} \\
& I_{B}=I_{A}\left(\frac{d A}{d_{B}}\right)^{2}=10\left(\frac{2}{5}\right)^{2}=10\left(\frac{4}{25}\right) \\
& =1.6 \mathrm{Wm}^{-2}
\end{aligned}
$$

(1) right equation vising all \& variables.
(1) right ansuler-

Question 16 (6 marks)
The following diagram shows the displacement versus distance graph for a transverse wave moving to the right at two instants of time: $t=0.0 \mathrm{~s}$ and 0.01 s later.

(a) Use the graphs above to determine:-
(i) the amplitude of the wave.

$$
0.7 \mathrm{~cm} \text { (must have units) }
$$

(ii) the wavelength of the wave.

Question 16 continued on next page.

\square
Class

Name
Question 16 continued.
(iii) the speed of the wave.

$$
\begin{aligned}
& \text { Ware mores } 0.5 \mathrm{~m} \text { in } 0.01 \mathrm{~s} \\
& v=\frac{d}{t}=\frac{0.5}{0.01}=50 \mathrm{~m} / \mathrm{s} \\
& \text { (can use period, frepuary from (iv) or (v)) } \\
& v=f \lambda
\end{aligned}
$$

(iv) the frequency of the wave.

(v) the period of the wave.

(vi) the direction of motion of the particle at point W between $\mathrm{t}=0.0 \mathrm{~s}$ and $\mathrm{t}=0.01 \mathrm{~s}$.

Downwards from O.Tem to Ocm .
\square

Class

Name
Marks
Question 17 (5 marks)

Name

A light ray is shone from air $\left(\mathrm{n}_{\text {air }}=1.0\right)$ through glass $\left(\mathrm{n}_{\text {glass }}=1.49\right)$ to water $\left(\mathrm{n}_{\text {water }}=1.33\right)$. The angle of incidence is 35°

(a) Calculate the angle of refraction, θ_{2}, as the light passes from air to glass.

(b) Calculate the angle of refraction into the water θ_{3}, as the light passes from glass to water.

$$
\begin{aligned}
& 1.49 \sin 22.64^{\circ}=1.33 \sin \theta_{3} \\
& \sin \theta_{3}=\frac{1.49}{1.33} \sin 22.64 \\
& \theta_{3}=25.55^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 22.64^{\circ}=1.33 \sin \theta_{3} \quad \text { (1) correctly vising } \\
& \sin \theta_{3}=\frac{1.49}{1.33} \sin 22.64 . \quad \text { both refractive } \\
& \text { index. }
\end{aligned}
$$

Question 17 continued on next page.

Question 17 continued.

$$
\text { (c) Calculate the speed of light in the water. } \begin{aligned}
n_{3}=\frac{c}{v}, V_{3}=\frac{c}{n_{3}} & =\frac{3 \times 10^{8}}{1.33}= \\
& =2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Many answered Using Gels Law. from formula $\quad \frac{\sin i}{\sin r}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{\left(\frac{V_{1}}{f}\right)}{\left(\frac{V_{2}}{f}\right)}=\frac{V_{1}}{V_{2}}$

It can be shown

$$
\begin{aligned}
\frac{\sin \theta_{1}}{v_{1}} & =\frac{\sin \theta_{2}}{v_{2}}=\frac{\sin \theta_{3}}{V_{3}} \\
V_{3} & =V_{1} \frac{\sin \theta_{3}}{\sin \theta_{1}} \\
& =3 \times 10^{8} \times \frac{\sin 25.5^{\circ}}{\sin 35^{\circ}} \\
& =2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Question 18 (7 marks)
The refractive index of Medium X varies depending on the wavelength of the light entering it. The graph below shows how the angle of refraction varies depending on the angle of incidence when blue and red light travel from Medium \mathbf{X} to air.

(a) Use the graph to determine the critical angle for blue light in Medium X.

Question 18 continued on next page.
\square
Class

Question 18 continued.
(b) Determine the refractive index for blue light in Medium X.
\qquad
(i) correct formula or method
(1) correct answer.
(c) What would the angle of incidence have to be for there to be a 16 degree difference in the angle of refraction between blue and red light when the light travels from Medium X to air?

$$
32^{0} \quad(315-32.5 \text { a umped })
$$

(d) Identify which colour of light slows down the most in Medium X. Explain your answer.
R/
is refracted more away from the normal.
this would indicate a greater change in speed entering air where bolt go at the same speed. The refractive index of red light is lit (must be camporison). means it slows down less han olive light it 1.7.
(c) Calculation of velocities $V_{\text {Dive }}=108 \times 10^{8} \mathrm{~m} / 3$, Vied $=2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Note: Answers me st make an implicit link between Page 15 of 40 ton is from medivnd to air obscisution and outcome. Retrauion is from that infer otherwise are misinterpreting

Question 19 (2 marks)
The following graph shows a medium with 2 waves moving through it simultaneously.

Draw the combined displacement of the medium as a result of these 2 waves.
2

\square
Class

Name
Question 20 (2 marks)
Ganymede and Callisto both orbit the planet Jupiter.

Moon	Period (days)	Mean Distance from Jupiter (million km) Callisto $1^{\text {(da. }}$
Ganymede	$?$	1.88

Use the data in the above table to determine the period of Ganymede's orbit around Jupiter.

Question 21 (7 marks)
(a) An element of mass number 241 and atomic number 95 undergoes an alpha decay.

Write a nuclear decay equation using correct chemical symbols for this reaction.
(b) Carbon-14 undergoes beta minus decay.

Write a nuclear decay equation for this reaction.
(c) (i) The decay graph for carbon-14 is depicted below.

Using this graph, determine the half-life for carbon-14.

(ii) If a piece of wood is measured to have only $1 / 16$ of its original carbon- 14 remaining, how old is the piece of wood?
\qquad
\qquad

Class

Question 22 (2 marks)
Name

Consider the following diagram.

Explain why gamma rays are significantly more penetrating than alpha particles.
11 rays uncharged a particles +2 charge
(1) Any sensible comparison
eg a hilly ionizing γ not
α interact strongly with clogs γ does not γ high speed α lower speed
α large mass γ no mass
\square
Class

Name
Question 23 (4 marks)
With the aid of labelled diagrams, show how the geocentric and heliocentric models of the Universe explain the retrograde motion of Mars.

Geocentric

Fixed Starry Background
East

Marked Very generously.
Geocentric $\overline{\text { bedel (2) (Oigamant description) }}$ Retrograde motion explain by the planet moving bade words on its epicycle.
Heliocentric Model (2) (Diagram + del ascription)
Retrogata motion explained by planet being overtaken by the Earth and so its position relative to the background stars mores back words.

Question 24 (5 marks)
Marks
A racing car is attempting to break the 'standing kilometre' time record. From rest, when the starting light turns green, the car accelerates at its maximum rate and crosses the finish line 40 s later on the race track travelling at $180 \mathrm{kmh}^{-1}$.
(a) Calculate the final speed of the racing car in ms^{-1}.
\qquad
(b) Calculate the acceleration of the racing car for the 40 s .

$$
a=50-0 / 40=1.25 \mathrm{~ms}^{-2}
$$

(c) Calculate the average speed of the racing car in for the 40 s .

\qquad
(d) Immediately after crossing the finish line, the racing car applied the brakes. It took 90 s for the car to come to rest. Assuming uniform deceleration, calculate the distance travelled from the finishing line until the racing car came to rest.

$$
\text { (1) } \quad a=0-50 / 90=-0.56 \mathrm{~ms}^{-2}
$$

r	$=n t+1 / 2 a t^{2}$
	$=50 \times 90+1 / 2 \times-0.56 \times 90^{2}$
(1)	$=2250 \mathrm{~m}$.
NB. Marked 2232.5 Pa me 23 ot 40 if rounded too seem.	

Class

Name
Question 25 (2 marks)
Marks
Consider the two blocks shown in the following diagram.

The blocks are connected by a light, inextensible string over a frictionless pulley. The 2.0 kg block is resting on a smooth horizontal surface.

Calculate the magnitude of the tension force in the string at X .

Class

Name
Question 26 (5 marks)
Marks
In an experiment, an air-rifle pellet is fired into a clay block that rests on a horizontal table.

The air-rifle pellet remains inside the clay block after impact. As a result of the collision, the clay block slides along the table in a straight line and comes to rest. Further data related to the experiment are given below.

$$
\begin{array}{ll}
\text { Mass of air-rifle pellet } & =2.0 \mathrm{~g} \\
\text { Mass of clay block } & =56 \mathrm{~g} \\
\text { Velocity of pellet just before impact } & =140 \mathrm{~ms}^{-1} \\
\text { Stopping distance of clay block } & =2.8 \mathrm{~m}
\end{array}
$$

(a) Calculate the speed of the clay block immediately after the air-rifle pellet strikes it.

Question 26 continued on next page.
\square
Class

Question 26 continued.
(b) Calculate the magnitude of the average force of friction that the table

$$
\begin{aligned}
& \text { exerts on the clay block while it is coming to rest. } \\
& \text { (1) } E_{K}=1 / 2 \mathrm{mV}^{2}=1 / 2 \times 0.058 \times 4.83^{2}=0.675 \mathrm{~J}
\end{aligned}
$$

(1) $F=W / r=\frac{0.675}{2.8} \quad \mathrm{~L}$

$$
(1) \quad=0.24 \mathrm{~N}
$$

OR via $\quad v^{2}=u^{2}+2 a r$

$$
0=4.83^{2}+2 a \times 2.8
$$

(1) $a=-4.16 \mathrm{~ms}^{-2}$

$$
\begin{aligned}
F & =m a \\
(1) & =0.058 \times 4.16 \\
(1) & =0.24 \mathrm{~N}
\end{aligned}
$$

Class

Name
Question 27 (4 marks)
A ball is suspended from a ceiling by a string 7.5 m long. The ball is kicked horizontally and rises to a maximum height of 6.0 m as shown in the following diagram.

(a) Ignoring air resistance, calculate the initial speed of the ball immediately after it is kicked.

(b) The mass of the ball is 0.550 kg and the impact time of the kicker's foot with the ball is 0.15 s .

Calculate the magnitude of the average force exerted on the ball by the kick.
$F t=\Delta m v$
$(1) \quad F=\frac{0.55 \times 10.8}{0.15}$

\square
Class

Question 28 (6 marks)
Consider the circuit shown in the diagram below.

(a) Determine the total resistance of the circuit.

$$
\frac{R_{11}: \frac{1}{R_{11}}=\frac{1}{20}+\frac{1}{30} \therefore R_{11}=12 \Omega \sqrt{1}(1)}{R_{\text {total }}=8+12=20 \Omega .}
$$

(b) Determine the total current in the circuit.

1
(c) Determine the reading on the voltmeter in the circuit.

(d) Determine the reading on the ammeter in the circuit.

$$
\begin{aligned}
& V_{30 \Omega}=40-16=24 \mathrm{~V} \cdot \sqrt{0} \text { © } \quad \text { K. } \\
& {\left[V_{30 \Omega}=40-\operatorname{Ans}(C)\right]} \\
& I=24 / 30=0.8 \mathrm{~A} \text {. } V \text { © } \mathrm{mk} \text {. } \\
& {\left[I=\frac{(40-A n s(c))}{30 \cdot{ }^{\text {Page } 29 \text { of } 40}} \text { if } 3 / 5 \times 2=1.2 A \cdot \sqrt{x}\right.}
\end{aligned}
$$

\square
Class

Question 29 (5 marks)
A house light is used to convert electrical energy into light energy. The house light draws 6 A of current when connected to a 240 V power supply.
(a) Calculate the resistance of the house light.

$$
R=V / I=240 / 6=4052 \mathrm{Dink}
$$

(b) Calculate the number of electrons flowing per second through the house light.

(c) Briefly explain what will happen to the power output if a higher resistance house light is used with the 240 V power supply.

\qquad
\qquad

Class

Name	
	Marks

Draw the magnetic field surrounding a wire carrying conventional current into the page.

\square

Question 31 (2 marks)
Double insulation, fuses and circuit breakers are three safety features commonly used in electrical circuits within the home.

Choose one of these features and briefly describe the general principle of the named feature.

Name of feature : \qquad fuse

Description: Large current melts low meeting point alloy $\sqrt{\text { (D)Mk. }}$ stops the current/breaks the circuit or description of purpose -to prevent a fire lomk.

Description: breaks (opens) circuit
(switches off the power) when $\sqrt{\text { Dink. }}$ current too high/exceeds a certain safe limit
To prevent a fire, or to protect (omb. humans from electrocution (orshock).

Name of device : \qquad double insulation

Description : \qquad electrical appliances nave a casing of rigid plastic to act as Vomk insulation ie. an inner and outercasing. To prevent humans from electrocution (or shock). $\sqrt{\text { (1) mk e }}$

AAH - CRIB

Question 32 (3 marks)
Consider the following circuit.

A current of 0.5 A flows through resistor X .
(a) Calculate the current through the 6Ω resistor.
$7(\mathrm{I}+0.5)+6 \mathrm{I}=36 \quad$ (or equivalent expression in I)
1 Mark
$\underline{I=2.5 \mathrm{~A}}$
2 Marks
(b) Calculate the value of the resistor labelled X .
$0.5 \mathrm{X}=6 \mathrm{I}$
$\underline{X=30 \Omega}$
1 Mark

Carry through possible from (a) if workings are clear.

Question 33 (4 marks) Marks

The diagram below shows two charges, Q_{A} and Q_{B} fixed in place and separated by a distance of $250 \mathrm{~m} . \mathrm{Q}_{\mathrm{A}}$ has a charge of +6.0 C , but the charge on Q_{B} is unknown. A third charge, of mass 50 kg and charge +2.0 C , is placed at $\mathrm{X}, 75 \mathrm{~m}$ from Q_{A}.

When it is released, the charge at X has an acceleration of $3.3 \times 10^{5} \mathrm{~ms}^{-2}$ to the right.

Calculate the charge Q_{B}.
$\mathrm{F}_{\mathrm{X}}=3.3 \times 10^{5} \times 50=1.65 \times 10^{7} \mathrm{~N} \quad 1$ Mark
Valid substitution into Coulomb's Law for force due to Q_{A} or Q_{B}
Correct Answer but wrong sign
1 Mark
Correct Answer plus right sign
2 Marks

Answer:

$1.65 \times 10^{7}=\left[\mathrm{k} .6 .2 / 75^{2}\right]-\left[\mathrm{k} \cdot \mathrm{Q}_{\mathrm{B}} \cdot 2 /(250-75)^{2}\right] \quad$ (assuming Q_{B} is positive)
$\mathrm{Q}_{\mathrm{B}}=+4.59 \mathrm{C}$

The diagram below shows two trolleys, A and B. Initially, trolley A of mass 2.0 kg has a velocity of U to the right and trolley B of mass m_{B} is at rest.

Trolleys A and B collide elastically. After the collision, trolley A has a velocity of 7U/9 to the right.

Calculate the mass of trolley B.

Valid conservation of momentum expression
1 Mark
e.g. $2 U=14 U / 9+M_{B} V_{B}$

Valid conservation of energy expression
1 Mark
e.g. $U^{2}=49 U^{2} / 81+M_{B} V_{B}{ }^{2} / 2 \quad$ OR $\quad V_{B}-7 U / 9=U$

Substitution to form valid expression in terms of M_{B}
1 Mark
e.g. $4 \mathrm{U} / 9=16 \mathrm{M}_{\mathrm{B}} \mathrm{U} / 9$

Final Answer: $\underline{M}_{B}=\mathbf{0 . 2 5} \mathbf{~ k g}$
1 Mark

A ball is thrown upwards at a speed U from the top of a high building as shown in the diagram below.

The ball passes a point X 3.25 s after it was thrown, and a point Y , which is 8.0 m below $\mathrm{X}, 0.30 \mathrm{~s}$ later.

Calculate the initial speed, U , of the ball.
Valid Equation for ball at X
e.g. $r_{X}=-3.25 U+4.9 \times 3.25^{2}$

Valid Equation for ball at Y
1 Mark
e.g. $r_{x}+8=-3.55 U+4.9 x 3.55^{2}$

Valid combination of equations above:
1 Mark
e.g. $-3.25 U+4.9 \times 3.25^{2}=-3.55 U+4.9 \times 3.55^{2}-8$

Correct Answer: $\underline{\mathbf{U}=\mathbf{6 . 6 5} \mathbf{~ m s}^{\mathbf{1}}}$
1 Mark
$N B-$ Other valid approaches credited as appropriate.

