Sydney Grammar School

Physics

Thursday $27^{\text {th }}$ August 8.40AM

General Instructions

- Working time -2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet, Formula Sheet and Periodic Table are provided at the back of this paper
- Write your name at the top of the Multiple Choice Answer Sheet \& all pages of Part B
- Hand in your Multiple Choice Sheet and all of Part B in one bundle. (Do not staple together)

2015

FORM V
ANNUAL EXAMINATION

Working Time: 2 hours

Total marks (90)
This paper has two parts: Part A and Part B.

Part A

Total marks (14)

- Attempt ALL Questions
- Allow about 20 minutes for this Part

Part B

Total marks (76)

- Attempt ALL Questions
- Allow about 1 hour 40 minutes for this Part

CHECKLIST	
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	

1 - SRW	3 - PCK	5 - MRW	
2 - MTK	4 - AAH	6 - DGB	

EXAMINERS:

1 In the Ptolemaic model of the universe, the retrograde motion of Mars and the outer planets was explained by:
(A) the planets orbiting the Sun.
(B) the planets orbiting the Earth in ellipses.
(C) an optical illusion caused by the phases of the moon.
(D) epicycles and deferents.

2 Which of the following alternatives best describes the characteristics of alpha particles?
(A) High penetrating power, deflected in both magnetic and electric fields, positively charged, low ionising power.
(B) Low penetrating power, deflected in both magnetic and electric fields, positively charged, high ionising power.
(C) High penetrating power, not deflected by magnetic or electric fields, not charged, high ionising power.
(D) Low penetrating power, deflected in both magnetic and electric fields, negatively charged, high ionising power.

3 Kepler's Second Law states that "the line joining the Sun to the planet sweeps out equal areas in equal times." One consequence of this is:
(A) planets travel at the same speed relative to each focus of the ellipse.
(B) planets travel at a constant speed around the Sun.
(C) planets travel fastest when they are furthest from the Sun.
(D) planets travel fastest when they are closest to the Sun.

4 If the resistance of a light bulb is R, which equation below represents the power consumed by the bulb?
(A) $\quad \mathrm{IR}^{2}$
(B) $\quad \mathrm{IR}$
(C) $\quad \mathrm{VR}$
(D) $\quad \mathrm{V}^{2} / \mathrm{R}$

5 The 3 wires in household electrical circuits are:
(A) active, neutral, earth.
(B) power output, power input, neutral.
(C) positive, negative, ground.
(D) AC, DC, ground.

6 Three identical resistors are connected in parallel in the circuit below.

When the switch is open a current of I is measured by the ammeter. When the switch is closed, the current measured is:
(A) $I / 3$
(B) I
(C) $1.5 I$
(D) $3 I$

7 A radio station produces waves with a frequency of 96.0 MHz . The wavelength of the waves is:
(A) $9.60 \times 10^{-7} \mathrm{~m}$
(B) 0.320 m
(C) 3.13 m
(D) $2.88 \times 10^{16} \mathrm{~m}$

8 A boy strikes a drum when standing near a rock face. He finds that the time taken for the echo to reach him is 0.500 seconds from the time he struck the drum. If the speed of sound in air is $330 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ then he is standing:
(A) 82.5 m from the rock face.
(B) 165 m from the rock face.
(C) 330 m from the rock face.
(D) 660 m from the rock face.

9 Light reflects from a parabolic mirror as shown below.

It is true to say that the law of reflection:
(A) holds for all rays striking the mirror.
(B) is only true for rays close to the axis of the mirror.
(C) is only true for rays travelling along the axis of the mirror.
(D) does not hold in this case as the surface is curved.

10 When a sound wave travelled from air into water it was found that the speed of the wave increased from $330 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to $1650 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. If the frequency of the sound wave in air was 500 Hz , then it is true to say that:
(A) the frequency of the sound wave in water was 2500 Hz
(B) the frequency of the sound wave in water was 100 Hz
(C) the frequency of the sound wave in water was 500 Hz
(D) the frequency of the sound wave in water was 0.002 Hz

11 A speed of $45.0 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ is equivalent to:
(A) $7.14 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
(B) $12.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
(C) $45.0 \mathrm{~m} . \mathrm{s}^{-1}$
(D) $162 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

12 A train travelling at $35.0 \mathrm{~ms}^{-1}$ slows down and stops at a station in 22.0 s . The magnitude of the acceleration of the train is:
(A) $0.371 \mathrm{~m} . \mathrm{s}^{-2}$
(B) $0.591 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
(C) $0.629 \mathrm{~m} . \mathrm{s}^{-2}$
(D) $\quad 1.59 \mathrm{~m} . \mathrm{s}^{-2}$

13 Calculate the magnitude of the acceleration of the 5 kg mass shown in the diagram below.

(A) $2 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
(B) $4 \mathrm{~m} . \mathrm{s}^{-2}$
(C) $6 \mathrm{~m} . \mathrm{s}^{-2}$
(D) $8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$

14 A boy of mass 45.0 kg is running at a speed of $6.00 \mathrm{~ms}^{-1}$. His kinetic energy is:
(A) 270 J
(B) 338 J
(C) 810 J
(D) 1620 J

Part B

Total marks (78)
Attempt ALL Questions
Allow about 1 hour and 40 minutes for this Part

Name
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 15 (4 marks)
(a) Write the equation for the beta decay of strontium-90 into yttrium-90.
(b) Write the equation for the alpha decay of ${ }_{89}^{225} \mathrm{Ac}$.
(c) Showing your working on the following decay curve, determine the half-life of strontium- 90 .

\square	
Question 16 (5 marks)	\square Class
Name Marks	

A Hertzsprung-Russell diagram is shown below:

(a) Add labels to the diagram to indicate the positions of:
(i) the Main Sequence.
(ii) the White Dwarfs.
(b) With reference to the diagram above, describe the life-cycle of a star like the Sun.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 17 (4 marks)
Earth's first artificial satellite, Sputnik I, had an orbital period of 5760 s .
Australia's first AUSSAT satellite, which was launched in 1985, had an orbital period of 24 hours, giving it a geosynchronous orbit. To achieve this orbital period, AUSSAT was placed at an orbital radius $4.216 \times 10^{7} \mathrm{~m}$ from the centre of the Earth

(a) State Kepler's Law of Periods (i.e. Kepler's Third Law).
\qquad
\qquad
(b) Determine the orbital radius of Sputnik I around the Earth.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name

BLANK PAGE

Explain how the astronomical observations of Galileo Galilei helped to improve the understanding of the solar system.
\qquad

A student notices that a boat bobbing up and down in the ocean takes 2 seconds to travel from its maximum to its minimum position relative to equilibrium. He also notices that the wavelength of the ocean waves is 10 metres.
(a) Determine the period of the water waves.
(b) Determine the frequency of the water waves.
\qquad
\qquad
(c) Determine the speed of the waves.
\qquad
\qquad

An earthquake wave consists of two types of waves: P (compressional) and S (shear wave). The speed of these two types of waves is different. It is found that, at a city struck by these waves, the P wave arrives 5 minutes before the S wave.
(a) Using the graph below determine the distance of the origin of the earthquake from the city.

(b) If another city is located 6000 km from the earthquake, determine the time interval between the arrival of the P and S waves.
\qquad
\qquad

Question 21 (3 marks)
Two students are standing 10 m apart in a direct line from a point light source. If one student measures an intensity of $2 \times 10^{-3} \mathrm{~W} \cdot \mathrm{~m}^{-2}$ while the other student measures $1 \times 10^{-3} \mathrm{~W} \cdot \mathrm{~m}^{-2}$ determine the distance of the closest student to the light source.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 22 (3 marks)
On the graph paper below, draw the superposition of the two waves shown 10

Consider the diagram below for a light ray of wavelength 700 nm travelling along the normal from air into a glass prism of refractive index $=1.5$.

(a) Determine the speed of the light in the glass prism.
\qquad
\qquad
(b) Determine the wavelength of the light in the glass prism.
\qquad
\qquad
(c) Determine the angle of refraction when the light leaves the glass prism.
\qquad
\qquad
\qquad
\qquad

The diagram below shows light travelling through an optical fibre and out into the air beyond.

(a) Calculate the critical angle for light at the boundary between the core and the cladding.
\qquad
\qquad
\qquad
\qquad
(b) Calculate the maximum angle, θ, at which light can leave the end of the fibre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 25 (5 marks)
(a) In the following circuit, Ammeter A_{1}, reads 2 A , and Ammeter A_{2} reads 3.0 A .

Determine the voltage, V that must be applied for this to occur.
\qquad
\qquad
\qquad
\qquad

Question 25 continued on next page.

Question 25 continued.

(b) For the circuit shown below, predict and explain the effect of closing the switch on the brightness of light bulbs A and B, compared to when the switch is open.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The resistance of a resistive metal wire with a cylindrical shape is given by the equation:

$$
R=\rho \frac{L}{A}
$$

Where: $\quad L$ is the length of the wire A is the cross-sectional area of the cylinder ρ is the 'resistivity' of the wire.

The wire shown below is made from a material with a resistivity of $1.10 \times 10^{-6} \Omega . \mathrm{m}$

Calculate the resistance of the wire shown above.
\qquad
\qquad
\qquad
\qquad

Name

BLANK PAGE

Question 27 (4 marks)

Two metal plates are separated by 5.0 mm and 100 V is applied across them.

(a) Draw the electric field between these two plates.
(b) What is the magnitude of the electric field strength between these plates?
(c) What would be the direction of the electrical force on a negative charge placed between the plates?
\qquad

The following diagram shows the electric field produced by three charges $+3 \mathrm{C},+1 \mathrm{C}$ and -4 C .

(a) Draw arrows on the above diagram showing the direction of the electric field at A and at B

Question 28 continued.
(b) Is the electric field strength greater at point A or point B? Justify your answer.
\qquad
\qquad
\qquad
\qquad
(c) $\mathrm{A}+2 \mathrm{C}$ charge is placed at point A and experiences a 5 N force.

Calculate the magnitude of the electric field strength at point A.
\qquad
\qquad

Class

Name

Question 29 (4 marks)
The following circuit has two unknown resistors, X and Y .

The following measurements were made when the switch was open and closed.

	Voltmeter (V)
Switch open	9.6
Switch closed	4.8

Determine the value of the resistances X and Y .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 30 (3 marks)
Marks
As part of an action sequence for a film, a stunt driver on a motorcycle tries to catch up with a speeding train, as shown in the diagram below.

When it passes the motorcyclist, the train is travelling at $30 \mathrm{~ms}^{-1}$ but decelerating at $1.0 \mathrm{~ms}^{-2}$. The motorcyclist, who is initially at rest, immediately gives chase, accelerating at a constant rate until he catches up with the train.

The motorcyclist catches up with the train 350 m down the track.
Determine the acceleration of the motorcycle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name

BLANK PAGE

Question 31 (2 marks)

Car A, of mass 1400 kg travelling at $20 \mathrm{~ms}^{-1}$ to the right, collides head on with Car B, of mass 1800 kg travelling at $10 \mathrm{~ms}^{-1}$ to the left. After the collision, the two cars stick together.

Car A 1400 kg

Car B
1800 kg
(a) Calculate the magnitude of the initial momentum of Car A.
(b) Calculate the magnitude of the velocity of Car A immediately after the collision.
\qquad
\qquad

Question 32 (3 marks)
A pupil performs an experiment with the Atwood machine shown below.

The pupil varies the mass of the falling weight, M_{w} and measures the acceleration of the system. His results are shown on the graph below:

Question 32 continued on next page.

Using the graph on the previous page, determine:
(a) the friction acting on the wooden block.
(b) the mass of the wooden block.
\qquad
\qquad
\qquad
\qquad

Class
Name

Question 33 (6 marks)
Marks
In the experiment below, a charged sphere of mass $2.5 \times 10^{-3} \mathrm{~kg}$ is allowed to fall through an electric field, as shown.

The voltage between the plates is varied, and the velocity of the sphere as it hits the lower plate is measured.

Theoretically, the relationship between the voltage, V, across the plates and the velocity, v, of the sphere is found by conserving energy, and is given by:

$$
v^{2}=2 g d+2 V q / m \quad(\text { Equation 1) }
$$

where: $\quad d$ is the separation of the plates g is the acceleration due to gravity q is the charge on the sphere and m is its mass.

The results obtained in the experiment are shown below:

Voltage (V)	Velocity $\left(\mathrm{ms}^{-1}\right)$		
100	2.14		
200	2.30		
400	2.58		
600	2.83		
800	3.06		
1000	3.27		

Question 33 continued on next page.

Class
Name Marks
Mander

(a) Using the data given on the previous page, plot a straight line graph that will allow you to verify Equation 1 for this data. (NOTE: extra columns have been provided in the table, should you need them.)

(b) Calculate the charge on the sphere.
\qquad
\qquad
\qquad
\qquad

The diagram below shows a series of trolleys on a frictionless surface.

Initially, Trolley 1 is travelling at a speed of $4 \mathrm{~ms}^{-1}$, and the other trolleys are stationary. The trolleys are not connected, and are set up so that, when they collide, they do so elastically.
(a) Calculate the velocity of Trolley 2, immediately after it collides with Trolley 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 34 continued on next page.

 Class
 Name

Question 34 continued.

(b) Calculate the velocity of Trolley 6, immediately after it collides with Trolley 5.
\qquad

Name

BLANK PAGE

Physics

Data Sheet

Charge on the electron, q_{e}	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of neutron, m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton, m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Speed of sound in air	$330 \mathrm{~m} \mathrm{~s}^{-1}$
Earth's gravitational acceleration, g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of Earth, R_{E}	$6.4 \times 10^{6} \mathrm{~m}$
Speed of light, c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic force constant, $\left(k \equiv \frac{\mu_{0}}{2 \pi}\right)$	$2 \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
Universal gravitational constant, G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Mass of Earth	$6.0 \times 10^{24} \mathrm{~kg}$
Planck's constant, h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Rydberg's constant, R (hydrogen)	$1.097 \times 10^{7} \mathrm{~m}^{-1}$
Atomic mass unit, u	$\begin{aligned} & 1.661 \times 10^{-27} \mathrm{~kg} \\ & 931.5 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
1 eV	$1.602 \times 10^{-19} \mathrm{~J}$
Density of water, ρ	$1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Specific heat capacity of water	$4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Coulomb's constant, k	$9.0 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$

FORMULAE SHEET FORM V ONLY

$$
\begin{aligned}
& v_{a v}=\frac{\Delta r}{\Delta t} \\
& a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t} \\
& I=\frac{Q}{t} \\
& v=u+a t \\
& R=\frac{V}{I} \\
& v^{2}=u^{2}+2 a r \quad P=V I \\
& r=u t+\frac{1}{2} a t^{2} \quad \text { Energy }=V I t \\
& \sum F=m a \\
& v=f \lambda \\
& F=\frac{m v^{2}}{r} \\
& f=\frac{1}{T} \\
& E_{k}=\frac{1}{2} m v^{2} \\
& I \propto \frac{1}{d^{2}} \\
& E_{p}=m g h \\
& W=F r \\
& n \lambda=d \sin \theta \\
& p=m v \\
& \frac{v_{1}}{v_{2}}=\frac{\sin i}{\sin r} \\
& n \lambda=\frac{d x}{L} \\
& \Delta p=F_{n} t \\
& E_{p}=-\frac{G m_{1} m_{2}}{r} \\
& F=m g \\
& \frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} \\
& E=\frac{F}{q} \\
& F=\frac{G m_{1} m_{2}}{d^{2}} \\
& E=\frac{V}{d} \\
& F=\frac{k Q_{1} Q_{2}}{d^{2}}
\end{aligned}
$$

FORMULAE SHEET

$$
\frac{F}{l}=k \frac{I_{1} I_{2}}{d} \quad d=\frac{1}{P}
$$

$$
F=B I l \sin \theta
$$

$$
M=m-5 \log \left(\frac{d}{10}\right)
$$

$$
\tau=F d
$$

$$
\tau=n B I A \cos \theta
$$

$$
\frac{I_{A}}{I_{B}}=100\left(m_{B}-m_{A}\right) / 5
$$

$$
\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}} \quad m_{1}+m_{2}=\frac{4 \pi^{2} r^{3}}{G T^{2}}
$$

$$
F=q v B \sin \theta \quad \frac{1}{\lambda}=R_{H}\left\lfloor\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right\rfloor
$$

$$
E=\frac{V}{d}
$$

$$
\lambda=\frac{h}{m v}
$$

$$
E=h f
$$

$$
c=f \lambda
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{f}}{R_{i}}
$$

$$
\begin{gathered}
Z=\rho v \\
\frac{I_{r}}{I_{0}}=\frac{\left[Z_{2}-Z_{1}\right]^{2}}{\left[Z_{2}+Z_{1}\right]^{2}} \quad \begin{array}{cc}
\text { Surface area of } a \\
\text { sphere of radius, } R
\end{array} \quad=\quad 4 \pi R^{2}
\end{gathered}
$$

$\begin{gathered} \mathrm{l} \\ \mathrm{H} \\ 1.08 \\ \text { Hydrogen } \end{gathered}$	PERIODIC TABLE OF THE ELEMENTSKEY																$\begin{gathered} 2 \\ \text { He } \\ 4.003 \\ \text { Helum } \end{gathered}$
$\begin{gathered} \hline \mathrm{Li} \\ \text { Li } \\ \text { 6.941 } \\ \text { Lithum } \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.012 \\ \text { Bepyllium } \\ \hline \end{gathered}$						$\begin{aligned} & \text { tomic Number } \\ & \text { Symbol } \\ & \text { Atomic Weight } \\ & \text { Name } \end{aligned}$	$\begin{gathered} 79 \\ \mathrm{Au} \\ 197.0 \\ \text { Gold } \end{gathered}$				$\begin{gathered} 5 \\ \text { B } \\ 10.81 \\ \text { Broon } \\ \hline \end{gathered}$	$\stackrel{\stackrel{6}{C}}{\substack{12.01 \\ \text { Carton }}}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ 14.01 \\ \text { Nitrogen } \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \hline 0 \\ 16.00 \\ \text { Oxygen } \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \\ \text { Fluorine } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \\ \text { Neon } \\ \hline \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \text { Sodium } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Mg} \\ 24.31 \\ \text { Magnesium } \end{gathered}$											$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \\ \text { Aluminium } \end{gathered}$	$\begin{gathered} 14 \\ \text { Si } \\ 28.09 \\ \text { Silicon } \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ 30.97 \\ \text { Phosphons } \end{array}$	$\begin{gathered} 16 \\ \text { S } \\ 32.07 \\ \text { Sulfur } \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \\ \text { Chlorine } \end{gathered}$	18 Ar 39.95 Argon
$\begin{gathered} 19 \\ \text { K } \\ 39.10 \\ \text { Poossium } \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \mathrm{Ca} \\ 40.08 \\ \text { Cakcium } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 21 \\ \text { Sc } \\ 44.96 \\ \text { Scandium } \\ \hline \end{array}$	$\begin{gathered} 22 \\ \text { Ti } \\ 47.87 \\ \text { Thanium } \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{v} \\ 50.94 \\ \text { Vandium } \\ \hline \end{gathered}$	$\begin{array}{\|c} 24 \\ \mathrm{Cr} \\ 52.20 \\ \text { Chromium } \\ \hline \end{array}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \\ \text { Mangancese } \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.85 \\ \text { Iron } \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \mathrm{Co} \\ 58.93 \\ \text { Coball } \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \text { Nickel } \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \text { Cu } \\ 63.55 \\ \text { Copper } \end{gathered}$	$\begin{gathered} 30 \\ \text { Zn } \\ 65.38 \\ \text { Zinc } \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \\ \text { Callium } \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.64 \\ \text { Gemanium } \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \\ \text { Assenic } \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \\ \text { Secenium } \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \\ \text { Bromine } \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \\ \text { Krypon } \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \\ \text { Rubidium } \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ \begin{array}{c} 87.61 \\ \text { Stronium } \end{array} \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ \begin{array}{c} 88.91 \\ \text { yurum } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \\ \text { Zirconium } \end{gathered}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ 92.91 \\ \text { Niobium } \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.96 \\ \text { Molybdenum } \end{gathered}$	$\begin{gathered} 43 \\ \mathrm{Tc} \\ \text { Technefium } \end{gathered}$	$\begin{array}{\|c\|} \hline 44 \\ \text { Ruu } \\ \text { 101.1. } \\ \text { Rubhenium } \end{array}$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ 102.9 \\ \text { Rhodium } \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \\ \text { Palladium } \end{gathered}$	$\begin{gathered} 47 \\ \text { Ag } \\ 107.9 \\ \text { Silver } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Cd} \\ 112.4 \\ \text { Cadmium } \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \text { Ind.8 } \\ \text { ndium } \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \\ \text { Tin } \end{gathered}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ 121.8 \\ \text { Antimony } \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \\ \text { Tellurium } \end{gathered}$	$\begin{gathered} 53 \\ 1 \\ 126.9 \\ 1 \text { Iddine } \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ 131.3 \\ \text { Xenon } \end{gathered}$
$\begin{gathered} \hline 55 \\ \hline \text { Cs } \\ \text { Ceasium } \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.3 \\ \text { Baium } \\ \hline \end{gathered}$	Lan-71	$\begin{gathered} 72 \\ \text { Hf } \\ 178.5 \\ \text { Hafrium } \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \hline \text { Ta } \\ 180.9 \\ \text { Tanalum } \end{gathered}$	$\begin{gathered} 74 \\ \mathrm{~W} \\ \text { W } \\ \text { Thasten } \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.2 \\ \text { Rhenium } \end{gathered}$	$\begin{gathered} 76 \\ 0 \mathrm{c} \\ 190.2 \\ \text { Osmium } \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { Ir } \\ 192.2 \\ \text { Iridium } \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ 195.1 \\ \text { Platioum } \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ \text { 197.0 } \\ \text { Cold } \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \text { Hg } \\ 20.6 \\ \text { Mecruy } \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{Tl} \\ 204.4 \\ \text { Thallium } \end{gathered}$	$\begin{gathered} 82 \\ \text { Pb } \\ \text { 207.2 } \\ \text { Lead } \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ \text { Bi } \\ 2090 \\ \text { Bismuth } \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ \text { Polonium } \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ \text { Astatine } \end{gathered}$	$\begin{gathered} 86 \\ \text { Rn } \\ \text { Radon } \end{gathered}$
87 Fr Francium	$\begin{gathered} 88 \\ \text { Ra } \\ \text { Radium } \end{gathered}$	89-103	104 Rf Ruberoforium	$\begin{gathered} \hline 105 \\ \mathrm{Db} \\ \text { Dubrium } \end{gathered}$	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ \text { Seaborgium } \end{array}$	$\begin{gathered} 107 \\ \text { Bh } \\ \text { Bohrium } \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ \text { Hassium } \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \\ \text { Meiterium } \end{gathered}$	110 Ds Darmstadium	$\underset{\text { Ronggenium }}{\substack{111 \\ \text { Rg }}}$							

Lanthanoids														
	$\begin{gathered} 58 \\ \hline \text { ce } \\ \text { cen. } \\ \text { Couim } \end{gathered}$		$\begin{gathered} 60 \\ \text { Nd } \\ \text { Nut. } \\ \text { Neos.mim } \end{gathered}$	$\underset{\substack{61 \\ \text { Pmometimem }}}{\substack{\text { Premen }}}$	$\begin{gathered} 62 \\ \hline \text { Sm } \\ \text { s. } 50.4 \\ \text { semain } \end{gathered}$			$\begin{gathered} 65 \\ \hline \text { Tb } \\ \text { I58.9 } \\ \text { Trtrime } \end{gathered}$					$\begin{gathered} 70 \\ \text { Yb } \\ \text { Yu. } \\ \text { Yustim } \end{gathered}$	(lu
Actinoids														
${ }_{\text {Ac }}^{89}$	${ }_{\text {Th }}^{\text {Th }}$	${ }_{\text {Pa }}^{91}$	$\mathrm{U}_{\mathrm{U}}^{92}$	+ ${ }_{\text {Np }}$	${ }_{90}^{94}$	${ }_{\text {Am }}^{95}$	${ }_{C}^{96}$	${ }_{\text {Bk }}^{97}$	${ }_{C f}^{98}$	${ }_{\text {Es }}^{99}$	${ }_{\text {Fm }}^{100}$	${ }_{\text {Md }}^{101}$	${ }_{\text {No }}^{102}$	${ }_{\text {Lr }}^{103}$
Accrium	${ }_{\substack{\text { 23, } \\ \text { Trooum }}}^{2320}$	${ }_{\text {prosatioum }}^{231.0}$	${ }_{\substack{\text { and } \\ \text { Unaium }}}^{238.0}$	Neprouium	Plumium	Amencium	Cruium	Beckelium	Callonium	Emascrium	Femium	Mencescrim	Noxeximm	Uneraciom
Elements with atomic numbers 112 and above have been reported but not fully authenticated. Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.														

SYDNEY GRammar School

2015
 FORM V

ANNUAL EXAMINATION

General Instructions

- Write your class and candidate number in the space provided.
- Attempt all questions $1-14$
- Use a blue or black pen
- Select the alternative A, B, C, or D that best answers the question.
- Fill in the response circle completely.

Physics Part A ANSWER SHEET

1 In the Ptolemaic model of the universe, the retrograde motion of Mars and the outer planets was explained by:
(A) the planets orbiting the Sun.
(B) the planets orbiting the Earth in ellipses.
(C) an optical illusion caused by the phases of the moon.
(D) epicycles and deferents.

2 Which of the following alternatives best describes the characteristics of alpha particles?
(A) High penetrating power, deflected in both magnetic and electric fields, positively charged, low ionising power.
(B) Low penetrating power, deflected in both magnetic and electric fields, positively charged, high ionising power.
(C) High penetrating power, not deflected by magnetic or electric fields, not charged, high ionising power.
(D) Low penetrating power, deflected in both magnetic and electric fields, negatively charged, high ionising power.

3 Kepler's Second Law states that "the line joining the Sun to the planet sweeps out equal areas in equal times." One consequence of this is:
(A) planets travel at the same speed relative to each focus of the ellipse.
(B) planets travel at a constant speed around the Sun.
(C) planets travel fastest when they are furthest from the Sun.
(D) planets travel fastest when they are closest to the Sun.

4 If the resistance of a light bulb is R, which equation below represents the power consumed by the bulb?
(A) $\quad I R^{2}$
(B) $\quad \mathrm{IR}$
(C) VR
(D) $\mathrm{V}^{2} / \mathrm{R}$

The 3 wires in household electrical circuits are:
(A) active, neutral, earth.
(B) power output, power input, neutral.
(C) positive, negative, ground.
(D) AC, DC, ground.

6 Three identical resistors are connected in parallel in the circuit below.

When the switch is open a current of I is measured by the ammeter. When the switch is closed, the current measured is:
(A) $\quad 1 / 3$
(B) I
(C) $1.5 I$
(D) $3 I$
$7 \quad$ A radio station produces waves with a frequency of 96.0 MHz . The wavelength of the waves is:
(A) $9.60 \times 10^{-7} \mathrm{~m}$
(B) 0.320 m
(C) 3.13 m
(D) $2.88 \times 10^{16} \mathrm{~m}$

8 A boy strikes a drum when standing near a rock face. He finds that the time taken for the echo to reach him is 0.500 seconds from the time he struck the drum. If the speed of sound in air is $330 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ then he is standing:
(A) 82.5 m from the rock face.
(B) 165 m from the rock face.
(C) 330 m from the rock face.
(D) 660 m from the rock face.

9 Light reflects from a parabolic mirror as shown below.

It is true to say that the law of reflection:
(A) holds for all rays striking the mirror.
(B) is only true for rays close to the axis of the mirror.
(C) is only true for rays travelling along the axis of the mirror.
(D) does not hold in this case as the surface is curved.

10 When a sound wave travelled from air into water it was found that the speed of the wave increased from $330 \mathrm{~m} . \mathrm{s}^{-1}$ to $1650 \mathrm{~m} . \mathrm{s}^{-1}$. If the frequency of the sound wave in air was 500 Hz , then it is true to say that:
(A) the frequency of the sound wave in water was 2500 Hz
(B) the frequency of the sound wave in water was 100 Hz
(C) the frequency of the sound wave in water was 500 Hz
(D) the frequency of the sound wave in water was 0.002 Hz

11 A speed of $45.0 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ is equivalent to:

(A)	$7.14 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
(B)	$12.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
(C)	$45.0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
(D)	$162 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

12 A train travelling at $35.0 \mathrm{~ms}^{-1}$ slows down and stops at a station in 22.0 s . The magnitude of the acceleration of the train is:
(A) $\quad 0.371 \mathrm{~m} . \mathrm{s}^{-2}$
(B) $\quad 0.591 \mathrm{~m} . \mathrm{s}^{-2}$
(C) $0.629 \mathrm{~m} . \mathrm{s}^{-2}$
(D) $\quad 1.59 \mathrm{~m}_{\mathrm{s}} \mathrm{s}^{-2}$

13 Calculate the magnitude of the acceleration of the 5 kg mass shown in the diagram below.

Frictionless surface

(A)	$2 \mathrm{~m} . \mathrm{s}^{-2}$
(B)	$4 \mathrm{~m} . \mathrm{s}^{-2}$
(C)	$6 \mathrm{~m} . \mathrm{s}^{-2}$
(D)	$8 \mathrm{~m} . \mathrm{s}^{-2}$

14 A boy of mass 45.0 kg is running at a speed of $6.00 \mathrm{~ms}^{-1}$. His kinetic energy is:
(A) 270 J
(B) 338 J
(C) 810 J
(D) 1620 J

Part B

Total marks (78)
Attempt ALL Questions
Allow about 1 hour and 40 minutes for this Part

Class

Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 15 (4 marks)
(a) Write the equation for the beta decay of strontium-90 into ytrium-90.

(b) Write the equation for the alpha decay of ${ }_{89}^{225} \mathrm{Ac}$.

(c) Showing your working on the following decay curve, determine the half-life of strontium-90.

Range.
28 years $[23-33$ years $]$ Range of answers with some 1 indication of working on curve.

Class
Name

Question 16 (5 marks)

A Hertzsprung-Russell diagram is shown below:

(a) Add labels to the diagram to indicate the positions of:
(i) the Main Sequence.
(ii) the White Dwarfs.
(1) mk
(1) $m k$.
(b) With reference to the diagram above, describe the life-cycle of a star like the Sun.
correct sequence described.
from Main Sequence to Red
Giant to white Dwarf. VVV 3mks.
-1 mk for each error
[errors) identified on student.
answers.
\qquad
\square

Question 17 (4 marks)
Earth's first artificial satellite, Sputnik I, had an orbital period of 5760 s .
Australia's first AUSSAT satellite, which was launched in 1985, had an orbital period of 24 hours, giving it a geosynchronous orbit. To achieve this orbital period, $A U S S A T$ was placed at an orbital radius $4.216 \times 10^{7} \mathrm{~m}$ from the centre of the Earth.

(a) State Kepler's Law of Periods (ie. Kepler's Third Law). orbiting the same central body
(b) Determine the orbital radius of Sputnik I around the Earth.

$$
\begin{aligned}
& \Gamma_{A}=4.21 \times 10^{7} \mathrm{~m} \\
& r_{3}=\text { ? } \\
& T_{A}=24 \operatorname{hrs}(=24 \times 60 \times 60) \mathrm{s} . \\
& T_{s}=5760 \mathrm{~s} . \\
& \frac{r_{A}^{3}}{T_{A}{ }^{2}}=\frac{\Gamma_{s}^{3}}{T_{s}{ }^{2}} / \sqrt{\text { (1). relations, } p} \text {. } \\
& \frac{(4.216 \times 10)^{3}}{(24 \times 60 \times 60)^{2}}=\frac{r^{3}}{(5760)^{2}} \sqrt{(0) m k .} \text { for cons. } \\
& \text { for correct } \\
& \text { substitution. } \\
& \text { with ants for } \\
& T_{A} \text { and } T_{S} \\
& r=6.93 \times 10^{6} \mathrm{~m} \sqrt{\text { (1)rk. }} \underset{\text { for correct }}{\text { same. }} . \\
& \text { [Note: } r_{s}^{3}=3.31 \times 10^{20} \mathrm{~m} \\
& \text { answer bared or } \\
& \text { substitution." } \\
& (\text { forgot } \sqrt[3]{ })
\end{aligned}
$$

Question 18 (4 marks)

Marks

Explain how the astronomical observations of Galileo Galilei helped to improve the understanding of the solar system.

4

| Marking criteria | Marks |
| :--- | :---: | :---: |
| - At least 2 relevant astronomical observations (e.g. rough surface of the
 Moon, Jupiter's moons, changing phases of Venus). | |
| AND
 - At least 2 thorough explanations of how this observation helped to
 improve the understanding of the solar system. | 4 |
| - At least 2 relevant astronomical observations.
 AND
 - At least 2 sound explannations of how this observation helped to improve
 the understanding of the solar system OR only 1 thorough explanation. | 3 |
| - At least 2 relevant astronomical observations but no explanation of how
 this observation helped to improve the understanding of the solar systent. | 2 |
| OR
 - 1 relevant astronomical observation AND 1 thorough explanation of how
 this observation helped to improve the understanding of the solar system. | 2 |
| - Any relevant astronomical observation OR relevant idea on how Galileo
 Gulilei helped to improve the understanding of the solar system. | 1 |

Marker's comment:

Most of the boys who did not get full marks lost marks because they were unable to precisely describelexplain how the observation(s) led to a better understanding of the known universe.
e.g. Stating that "Galileo observed craters on the Moon and therefore it showed that the Moon (as probably other heavenly bodies) was not perfect" is a good start, but it doesn't explain how this led to reconsider the place of the Earth as the centre of the universe.
\rightarrow In the Christian conception of the Universe, the Earth was at the centre because God intended it that way (it's where God placed Its creation). The Earth was corrupt (original sin) and therefore not perfectly spherical and smooth, unlike the Heavenly bodies like the Moon and the planets, that have been conceived perfectly and placed in the Sky by God.
When Galileo discovered that the Moon had craters and mountains, and therefore was as "corrupt" as the Earth, it's the whole Christian perfect geocentric model of the universe that collapsed. If the system created by Ptolemy and endorsed by the Church was not true for the Moon, why would it be true for the place of the Earth at the centre of it? And if the Moon is a mere rock, what holds it up there?? It had to obey the same laws of Physics that we have on Earth, since it's not a perfect Heavenly body... This prepared the work of Newton.

A student notices that a boat bobbing up and down in the ocean takes 2 seconds to travel from its maximum to its minimum position relative to equilibrium. He also notices that the wavelength of the ocean waves is 10 metres,
(a) Determine the period of the water wave.

$$
T=2 \times 2 s=4 s \quad \text { (period: } \max \xrightarrow{2 s} \text { nin } \xrightarrow{2 s} \text { max) }
$$

(b) Determine the frequency of the water waves.

$$
f=\frac{1}{T}=\frac{1}{4}=0.25 \mathrm{~Hz}
$$

(c) Determine the speed of the waves.

$$
v=f \lambda=\lambda / T=\frac{10}{4}=2.5 \mathrm{~m}^{-1}
$$

An earthquake wave consists of two types of waves: P (compressional) and S (shear wave). The speed of these two types of waves is different. It is found that at a city struck by these waves, the P wave arrives 5 minutes before the S wave.
(a) Using the graph below determine the distance of the origin of the earthquake from the city.

On the y-axis, 5 min are represented by 1.1 cm .
Let's find the distance on the x-axis for which the separation between the two curves is $1.1 \mathrm{~cm}: d \approx 3450 \mathrm{~km}$.
(b) If another city is located 6000 km from the earthquake, determine the time interval between the arrival of the P and S waves.

Let's find the separation between the two curves when $d=6000 \mathrm{~km}$.
On the graph, we measure a separation of around 1.9 cm . On the y-axis, 5 min are represented by 1.1 cm so 1.9 cm represents a time $t \approx 8 \mathrm{~min} 40 \mathrm{~s}$.

Question 21 (3 marks)

Marks

Two students are standing 10 m apart in a direct line from a point light source. If one student measures an intensity of $2 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ while the other student measures $1 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ determine the distance of the closest student to the light source.

- 1 mark for $d_{B}=d_{A}+10$
- I mark for equation $I_{A} d_{A}{ }^{2}=I_{B} d_{B}^{2}$ Iso $\left.I_{A} d d_{A}{ }^{2}=I_{B}\left(d_{A}+10\right)^{2}\right]$
- I mark for solving the quadratic equation properly.

Sample answer:

$d_{B}=d_{A}+10$
$I_{A} d_{A}{ }^{2}=I_{B} d_{B}{ }^{2}$ so $I_{A} d_{A}{ }^{2}=I_{B}\left(d_{A}+10\right)^{2}$ so $2 x I \varphi^{-3} d_{A}{ }^{2}=1 \times 1 \phi^{-3}\left(d_{A}+10\right)^{2}$
Thus,

$$
2 d_{A}{ }^{2}=\left(d_{A}+10\right)^{2} \Rightarrow 2 d_{A}^{2}=d_{A}^{2}+20 d_{A}+100 \Rightarrow \quad d_{A}^{2}-20 d_{A}-100=0
$$

2 solutions: $d_{A}=\frac{20+\sqrt{20^{2}+4 \times 100}}{2 \times 1}=24.14 \mathrm{~m} \quad$ or $\quad d_{A}=\frac{20-\sqrt{20^{2}+4 \times 100}}{2 \times 1}=-4 . \times 4 \mathrm{~m}$
The only acceptable solution is $\underline{d}_{4}=24.14 \mathrm{~m}$

Markers' comments:

- Boys who solved the problem with the source between the two students (see diagram) did not read the text properly: "in a direct live FROM a point light source"...
 However, they were not penalised if they carried out the calculations properly.
- A lot of boys got the signs wrong when manipulating the original equation to get the quadratic equation $a x^{2}+b x+c=0$.

Question 22 (3 marks)

On the graph paper below determine and draw the superposition of the two waves.

- Neatness,

- Precision of superposition,
- How correctly the points are connected.

Question 23 (4 marks)
Consider the diagram below for a light ray of wavelength 700 nm travelling along the normal from air into a glass prism of refractive index $=1.5$.

(a) Determine the speed of the light in the glass prism.
\qquad
(b) Determine the wavelength of the light in the glass prism.
$\lambda=\frac{700}{1.5}=4.67 \times 10^{-7} \mathrm{~m}$
(c) Determine the angle of refraction when the light leaves the glass prism.

\qquad
\qquad
\square
Class

Name
Question 24 (5 marks)
The diagram below shows light travelling through an optical fibre and out into the air beyond.

Cladding, $\mathrm{n}=1.45$
Air, $\mathrm{n}=1.00$
Core $\mathrm{n}=1.50 \longrightarrow$
(a) Calculate the critical angle for light at the boundary between the core and the cladding.

(1)
(b) Calculate the maximum angle, θ, at which light can leave the end of the fibre.

(a) In the following circuit, Ammeter A_{1}, reads 2 A , and Ammeter A_{2} reads 3.0 A .

Determine the voltage, V that must be applied for this to occur.

\qquad

Question 25 continued on next page.
\square
Class

Name
Question 25 continued.
(b) For the circuit shown below, predict and explain the effect of closing the switch on the brightness of light bulbs A and B, compared to when the switch is open.

\square
Class

Name
Question 26 (2 marks)
The resistance of a resistive metal wire with a cylindrical shape is given by the equation:

$$
R=\rho \frac{L}{A}
$$

Where: $\quad L$ is the length of the wire
A is the cross-sectional area of the cylinder
ρ is the 'resistivity' of the wire.
The wire shown below is made from a material with a resistivity of $1.10 \times 10^{-6} \Omega . \mathrm{m}$

Calculate the resistance of the wire shown above.

If yo foot to blue the dimeter I still gave you (1) mark.

Class

Name
Marks
Question 27 (4 marks)
Two metal plates are separated by 5.0 mm and 100 V is applied across them.

- Rived struyght lines fum plate to
- equally spaced- why
- arrows down
(a) Draw the electric field between these two plates.
(b) What is the magnitude of the electric field strength between these

(c) What would be the direction of the electrical force on a negative charge placed between the plates?

The following diagram shows the electric field produced by three charges $+3 \mathrm{C},+1 \mathrm{C}$ and -4 C .

(a) Draw arrows on the above diagram showing the direction of the electric field at A and at B

$$
\begin{aligned}
& \text { A clear induction of the field ok } \\
& \text { duration of } A \operatorname{cod} B
\end{aligned}
$$

Question 28 continued on next page.

Question 28 continued.
(b) Is the electric field strength greater at point A or point B? Justify your answer.

\qquad
\qquad
(c) $\mathrm{A}+2 \mathrm{C}$ charge is placed at point A and experiences a 5 N force. Calculate the magnitude of the electric field strength at point A .

\square

Question 29 (4 marks)
The following circuit has two unknown resistors, X and Y .
 Closed switch

The following measurements were made when the switch was open and closed. ford mesistarn

	Voltmeter (V)
Switch open	9.6
Switch closed	4.8

Determine the value of the resistances X and Y .
 $=1.7 \Omega$
$4.8 \mathrm{~V} 7.2 \mathrm{~V} \quad 2.7 \mathrm{~A}$

(3) Lusentin $4 \Omega=\frac{7.2 V}{4 \Omega}=1.8 A$, (4) Laurent $(y)=2.7-1.8$
(5) Reisistumie $y=\frac{7.2 V}{0.4 A}: 18 \Omega$ $=0.94$

\square
Class

Name

Question 30 (3 marks)
As part of an action sequence for a film, a stunt driver on a motorcycle tries to catch up with a speeding train, as shown in the diagram below.

When it passes the motorcyclist, the train is travelling at $30 \mathrm{~ms}^{-1}$ but decelerating at $1.0 \mathrm{~ms}^{-2}$. The motorcyclist, who is initially at rest, immediately gives chase, accelerating at a constant rate until he catches up with the train.

The motorcyclist catches up with the train 350 m down the track.
Determine the acceleration of the motorcycle.

$$
\begin{aligned}
& \text { Find acceleration of motor cycle to cover } 350 \mathrm{~m} \text { in the sumo time } \\
& r=u t+\frac{1}{2} u t, u=0 \text {. So } a=\frac{2 r}{t^{2}}=\frac{2 \times 356}{15.556} \\
& a=2.78 \mathrm{~m} / \mathrm{s}^{2} \text { or } 2.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { (1) many - find time } \\
& \text { (1) Max - find acceleration }
\end{aligned}
$$

AAK
 Class
 CRIB.
 Name

Question 31 (2 marks)
Marks

Car A, of mass 1400 kg travelling at $20 \mathrm{~ms}^{-1}$ to the right, collides head on with Car B, of mass 1800 kg travelling at $10 \mathrm{~ms}^{-1}$ to the left. After the collision, the two cars stick together.

Car A 1400 kg

Car B 1800 kg
(a) Calculate the magnitude of the initial momentum of Car A .
$=20 \times 1400=28000 \mathrm{kgMs}^{-1}$
(b) Calculate the magnitude of the velocity of Car A immediately after the collision.

Question 32 (3 marks)
Marks
A pupil performs an experiment with the Atwood machine shown below.

The pupil varies the mass of the falling weight, M_{w} and measures the acceleration of the system. His results are shown on the graph below:

Question 32 continued on next page.
\square
Class

Name
Question 32 continued.

Using the graph on the previous page, determine:
From I TERCEDT of Guam.
(a) the friction acting on the wooden block.
(b) the mass of the wooden block.
$M_{\sin 4}$, e.g. $M_{N}=6.0 \mathrm{~kg}$:

ie Vans Substitution
Usia Two COREET
Values

NB: The detain Clearest Not A Smazigit line
(But this was not penalised in te centers of an otherwise correct answer.).

Class

Name
Question 33 (6 marks)
Marks
In the experiment below, a charged sphere of mass $2.5 \times 10^{-3} \mathrm{~kg}$ is allowed to fall through an electric field, as shown.

The voltage between the plates is varied, and the velocity of the sphere as it hits the lower plate is measured.

Theoretically, the relationship between the voltage, V, across the plates and the velocity, ν, of the sphere is found by conserving energy, and is given by:

$$
v^{2}=2 g d+2 V q / m \quad(\text { Equation } 1)
$$

where: $\quad d$ is the separation of the plates g is the acceleration due to gravity q is the charge on the sphere and m is its mass.

The results obtained in the experiment are shown below:

Voltage (V)	Velocity $\left(\mathrm{ms}^{-1}\right)$	$V^{2}\left(\left(\mathrm{~ms}^{-1}\right)^{2}\right)$
100	2.14	4.58
200	2.30	5.29
400	2.58	6.6 .6
600	2.83	8.01
800	3.06	9.36
1000	3.27	10.69

Question 33 continued on next page.

Question 33 continued.

(a) Using the data given on the previous page, plot a straight line graph that will allow you to verify Equation 1 for this data. (NOTE: extra columns have been provided in the table, should you need them.)

(b) Calculate the charge on the sphere.

$$
\left(\begin{array}{c}
\text { (an (1) For a Coneter SuBstitution } \\
\text { into Equation } 1 \\
\text { - with incoreter } q \text { - Page } 31 \text { of } 38
\end{array}\right.
$$

The diagram below shows a series of trolleys on a frictionless surface.

Initially, Trolley 1 is travelling at a speed of $4 \mathrm{~ms}^{-1}$, and the other trolleys are stationary. The trolleys are not connected, and are set up so that, when they collide, they do so elastically.
(a) Calculate the velocity of Trolley 2 , immediately after it collides with Trolley 1.
(SEE LARE FOR WORKED SOLuTION)

Question 34 continued on next page.

\square
Class

Name
Question 34 continued.
(b) Calculate the velocity of Trolley 6 , immediately after it collides with Trolley 5 .
\qquad

* Cazculates $V_{3}=\frac{32}{15}=2.133 \mathrm{~ms}^{-1}-2$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q34 Woeken Sowton...

* N.B Socve Araebraicaus for Pacer a) Fesst, Troen Ander to b).

Momatum : $\quad M_{1} U=M_{1} V_{1}+M_{2} V_{2}$
Ra Vecour1: $V_{2}-V_{1}=u \quad \Longrightarrow \frac{1}{2} M_{1} U^{2}=\frac{1}{2} M_{1} V_{1}^{2}+\frac{1}{2} M_{2} V_{2}^{2} \quad k \in$
\longrightarrow Sevorts Lines of Arabet...

$$
\left.V_{2}=2\left(\frac{M_{1}}{M_{1}+M_{2}}\right) u\right]
$$

FOR PART a) SUS in $U=4 \mathrm{mi}^{-} M_{1}=\left(\mathrm{kg} \quad M_{2}=2 \mathrm{~h}\right.$

$$
\longrightarrow V_{2}=\frac{8}{3} \mathrm{~ms}^{-1}
$$

$\underset{\text { Paren (4) }}{\operatorname{Pa}} \quad V_{3}=2\left(\frac{2}{2+3}\right) V_{2}=2\left(\frac{2}{2+3}\right) \cdot 2\left(\frac{1}{1+2}\right) 4$ ete ete

$$
\begin{gathered}
\longrightarrow \quad V_{6}=2^{5}\left(\frac{5 \times 4 \times 3 \times 2 \times 1}{11 \times 9 \times 7 \times 5 \times 3} \cdot 4\right. \\
V_{6}=1.48 \mathrm{~ms}^{-1}
\end{gathered}
$$

