

Girraween High School Mathematics

Year 12 HSC Task 1

November 2014

General Instructions

- Working Time 1 hour & 30 minutes
- Calculators and ruler may be used
- All necessary working out must be shown
- Write on one side of the paper only

Total Marks - 87

- Attempt all questions
- Marks may be deducted for careless or badly arranged work
- Start each question on a new sheet of paper

Part A

5 marks

Attempt Questions 1-5

Circle the letter corresponding to the correct answer on your multiple choice answer sheet.

Question 1 (1 mark)

A coin is tossed three times. What is the probability of obtaining at least one head?

A. $\frac{1}{8}$ B. $\frac{7}{8}$ C. $\frac{3}{8}$ D. $\frac{5}{8}$

Question 2 (1 mark)

Which of the following is true for the sequence: 4, $2\sqrt{2}$, 2, $\sqrt{2}$, ... ?

- A. there are negative terms in this sequence
- B. its infinite sum does not exist
- C. its infinite sum does exist
- D. the common ratio is $\sqrt{2}$

Question 3 (1 mark) Which is the value of $\sum_{n=11}^{39} (-1)^{n+1}$?

A. -28 B. -1

 $C. \ 0$

D. 1

Question 4 (1 mark)

Which of the following best describes the locus of a point which moves such that it is equidistant from a point and a line?

- A. the locus is a line
- B. the locus is a circle
- C. the locus is a parabola
- D. the locus is a hyperbola

Question 5 (1 mark)

n is an integer chosen randomly from the set $\{5, 7, 9, 11\}$ *p* is an integer chosen randomly from the set $\{2, 6, 10, 14, 18\}$ What is the probability that n + p = 23?

A. 0.1
B. 0.2
C. 2.5
D. 0.3

Section B

83 marks

Attempt Questions 11-16

Write your answers on the paper provided.

Question 6 (14 marks)

(a)	For the arithmetic sequence: $-57, -49, -41$	
	i. Find the value of a and d	[2]
	ii. Find the expressions for the n^{th} term	[2]
	iii. Find the 20 th term	[2]
	iv. Find the first positive term in the sequence	[2]
(b)	The 10^{th} and 20^{th} term of an arithmetic sequence are 26 and -24 respectively.	
	i. Find the values of a and d	[4]
	ii. Find the sum of the first 20 terms	[2]
Questi	on 7 (14 marks)	
(a)	Consider the geometric sequence: 18, 9, $4\frac{1}{2}$, \cdots , $\frac{9}{64}$	
	i. State the common ratio of this sequence	[1]
	ii. Determine the number of terms in this sequence	[2]
	iii. Find the value of $18 + 9 + 4\frac{1}{2} + \dots + \frac{9}{64}$	[2]
(b)	Using a limiting sum, express $0.\dot{5}\dot{7}$ as a fraction	[2]
(c)	Find the value of x such that $x, x + 1$ and $x + 10$ form a geometric sequence	[2]
(d)	A gardener plants a tree which was initially 80cm tall. At the end of the first year after planting, it was 130cm tall, that is it grew 50cm. Each year's growth was then 90% of the previous year's.	
	i. What was the growth of the tree in the second year?	[1]
	ii. How tall was the tree after three years?	[1]
	iii. How tall was the tree after ten years? Give your answer to the nearest cm.	[2]
	iv. Show that the tree never reaches the height of 6m.	[1]

The exam continues on the next page

Question 8 (15 marks)

(a) A die is biased so that the face showing 1 is likely to come up with a probability of 0.5. However, the other five faces, numbered 2, 3, 4, 5, 6 are all equally likely to appear.

	i. Find the probability of a 6 appearing	[1]
	ii. Find the probability of any odd number appearing	[1]
(b)	An athlete knows that he has a 20% chance of winning the 100m sprint event and a 30% chance of winning the 200m sprint. If he competes in both events, what is the probability that he will:	
	i. win both events?	[1]
	ii. not win the 100m sprint and the 200m sprint	[1]
	iii. win one event only	[2]
	iv. win atleast one event	[2]
(c)	There are five nominees for President and Vice President of a club. Three are women and two are men. The first name, selected at random, will be the President and the second name will be the Vice President.	
	i. Draw a probability tree to represent all possible outcomes	[2]
	ii. Determine the probability that the two positions will be filled by a woman and a man in either order.	[2]
(d)	To win a game a player has to throw a 6 with a regular die. Find the probability that :	
	i. the player wins at his first throw	[1]
	ii. the player wins at his second throw	[1]
	iii. Find the expression for the probability that the player wins on the n^{th} throw	[1]

The exam continues on the next page

Question 9 (15 marks)

For the parabola $(x - 3)^2 = 12(y + 1)$:

((a) Find the focal length	[1]
((b) Find the coordinate of the vertex	[1]
	(c) Find the equation of the axis of symmetry	[1]
((d) Find the equation of the directrix	[1]
	(e) Find the coordinate of the focus	[1]
	(f) Find the x intercept and y intercept of the parabola	[3]
((g) Find the equation of the focal chord passing through the origin	[3]
((h) Sketch the parabola showing the vertex, directrix, axis of symmetry, focus and the intercepts.	[4]

Question 10 (10 marks)

(a) Given that a parabola has its focus at (-1, 1) and its directrix is given by y = 7, find:

i. the focal length	[1]
	L .

ii. the equation of the parabola [3]

(b) A parabola has equation $x = \frac{1}{8}y^2 - \frac{1}{2}y + \frac{3}{2}$. Find:	
i. the coordinate of its vertex	[4]
ii. the coordinate of its focus	[1]

iii. the equation of its directrix

[1]

The exam continues on the next page

Question 11 (14 marks)

- (a) Out of 120 students, 80 study Biology and 60 study Physics and 20 study neither Biology nor Physics.
 - i. Draw a Venn diagram to illustrate this situation using B for Biology and P for [3] Physics.
 - ii. Find the number of students who study both Biology and Physics. [2]
 - iii. What is the probability that a student chosen at random does not do Physics? [2]

[3]

[4]

(b) Find all possible values of x such that

$$1 + (x^2 - 5) + (x^2 - 5)^2 + \cdots$$

will have a limiting sum.

(c) Suppose we have two integers p and q such that:

$$1, 3, 5, \cdots, p$$

and

$$1, 3, 5, \cdots, q$$

form arithmetic sequences.

Find p and q if:

$$(1+3+5+\dots+p) + (1+3+5+\dots+q) = (1+3+5+\dots+33)$$

End of exam

$$\frac{\sqrt{12}}{\sqrt{12}} \frac{211}{\sqrt{14}} \frac{7}{\sqrt{16}} \frac{5}{\sqrt{16}} \frac{1}{\sqrt{16}} \frac{1}{\sqrt{16}$$

$$\begin{array}{l} \frac{d6}{(a)} \\ (a) \\ (i) & a = -57 \quad d = 8 \\ \\ (ii) & T_n = a + (n-1)d \\ \\ & T_n = -57 \quad + 8(n-1) \\ & T_n = -57 \quad + 8n \\ \\ T_n = -65 \quad + 8n \\ \\ (ii7) \\ & T_{20} = -65 \quad + 8 \times 2 \\ \\ & T_{20} = 95 \\ \\ (iv) & -65 \quad + 8n > 0 \\ & 8n > 65 \\ \\ & n > \frac{65}{8} \\ \\ & n > 8 \cdot 125 \quad .'. \quad n = 9 \\ \\ \hline & (iv) & -26 = a + 9d \\ & - \cdots \\ \\ & T_q = -65 \quad + 72 = 7 \\ \\ (b) \\ (i) & 26 = a + 9d \\ & - \cdots \\ \\ & T_{q} = -57 \\ & -24 = a + 19d \\ & - \cdots \\ \\ & 0 \\ & = -57 \\ & a = 26 - 9d \\ & = 26 \quad + 45^{-} = 71 \\ \\ & \vdots \\ & a = 71 \end{array}$$

(4)
0.57 = 0.57 57 57 57 ---
= 0.57 + 0.0057 + ---
=
$$\frac{0.57}{1-0.01} = \frac{19}{33}$$

(c)
 $\frac{n+1}{2} = \frac{n+10}{n+1}$
 $(n+1)^2 = n(n+1.0)$
 $n^2 + 2n+1(=n^2+10n)$
 $i = 8n$
 $- n = \frac{1}{3}$
(d)
(i) 0.9 × 50 = 45 cm
(iii) tobel growth by the curl
of the 3rd year 3
50 + 45 + 0.9x 45 = 135.5
 $\therefore 107kt = 30 + 135.5 = 215.5 cm$
(iv) the growth of the tree fillows
 $a \le 6P$:
 $50 + 0.9x50 + 0.9 × 50 + ...$
 $5_{10} = \frac{50(1-0.9^{10})}{1-0.9} = 325.66...$
 $\therefore hught = 80 + 325.66... = 406 cm
(neurest Cm)$

W7_ (c) (a)(iv) The eventual growth is given by the Tafinite Sum: $S_{Q1} = \frac{S_{0}}{1 - 0.9} = S_{00}$ 215 : Max height = 804 500 = 580cm : Never render 600cm. 88 (a) (1) 0.1 (ii) P(1) + P(3) + P(5) (a)= 0.5 + 0.1 + 0.1 = 0.7(6) (i) 0.2×0.3 = 0.06 (iii) (ir) 1-0.06 = 0.94 (:;) P(WL) + P(LW) = 0.2×0.7 + 0.8×0.3 = 0.38 (iv) p=1-p(lose both) =/ - 0.8×0.7 = 0.44

21/4 -M 3 4 mw m MM (ii) P(MW) + P(WM) $= \frac{2}{5} \times \frac{3}{4} + \frac{1}{5} \times \frac{2}{4}$ $= \frac{6}{26} + \frac{6}{20} = \frac{12}{20} = \frac{3}{5}$ (1) 1 $(ii) \frac{5}{6} \times \frac{1}{6} = \frac{5}{76}$ Let Pu denote the publisherity of whomy on the 11th throw. $P_n = \binom{S}{6} \times \frac{1}{6}$ (iv) Probabolity of Linning decreases with each thron of Puti & Pn Is. Pati-Paso.

28 (d) (iv) Pure - Pu $= \left(\frac{1}{6}\right)^{n} \times \frac{1}{6} - \left(\frac{5}{6}\right)^{n} \times \frac{1}{6}$ $= \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6} - \left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6}$ $= \frac{1}{6} \left(\frac{5}{6} \right)^{n-1} \left[\frac{5}{6} - 1 \right]$ $= -\frac{1}{6^2} \left(\frac{5}{6}\right)^{n-1}$ Since $\left(\frac{5}{6}\right)^{n-1}$ > o there fore $-\frac{1}{36}\left(\frac{5}{6}\right)^{n-1}<0$ -- p of wonning iterrenses with cash throw. $\frac{\alpha_{9}}{(n-3)^{2}} = 4 \times 3 \times (4 \times 1)$ (a) a=3 (b) V= (3,-1) (c) x= 3 (d) y = -4(e) F=(3,2)

(f) when n=0 9= 12 (y+1) 111 = 3 4 $y = -\frac{1}{4}$: $(0, -\frac{1}{4})$ when y = 0 (21-3) = 12 1-3= ±2/3 2= 3 ± 2,53 = (3+2,53,0) 71= 6.46 -.. (3-253, 0) (1) Line passing Himmigh (3,2) & (0,0) $m = \frac{2-0}{3-0} = \frac{2}{3}$ $y - o = \frac{2}{3}(n - o)$ A05 : 21 = 3 $y = \frac{2}{3}\chi$ F(3,2) (h) (3+2v7, 0) (3-25,0) V(3, -1)

(0) $bet p = u_1^{th} term in$ the sequenceLet q = U2 term m the sequence. Now a= 1 & d= 2 So $p = 1 + (n_1 - 1)2$ p = 2n, -1 (*) 5, g= 212-1 Now $S_{u_1} = 1 + 3 + \dots + p = \frac{u_1}{2} (1 + p)$ $S_{n_1} = \frac{n_1}{2} (2n_1) = n_1^2 (\Delta)$ $S_0 S_{M_2} = 1+3+...+q = M_2^2$ $\therefore 1+3+...+p+1+3+..+q=n_{1}^{2}+n_{2}^{2}$:. N1 + N2 = 1+3+ -- +33 $n_{1}^{2} + n_{2}^{2} = 17^{2}$ trial & error gives 82+152=172 : U,= 8 & U2=15 -: p= 15 & q= 29 Note: nsing (*) 33=2n-1 2n = 34.: n=17 50 33 B the 17th term in the sequence. Using (0) 517 = 1+3+...+33=172