Name : _____

HURLSTONE AGRICULTURAL HIGH SCHOOL YEAR 12 2009 MATHEMATICS ASSESSMENT TASK 1

Examiners P. Biczo, S. Hackett

General Instructions

- Reading time : 3 minutes
- Working time : 40 minutes
- Attempt all questions
- Start a new sheet of paper for each question
- All necessary working should be shown
- This paper contains 4 questions worth 8 marks each. Total Marks: 32 marks
- Marks may not be awarded for careless or badly arranged work
- Board approved calculators may be used
- This examination paper must **not** be removed from the examination room

Question 1 (Start a new sheet of paper) Marks Evaluate $\lim_{x \to \infty} \frac{3-4x}{x^2-5x}$ (i) 1 Use the definition of the derivative, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, to find 2 (ii) f'(x) when $f(x) = x^2 - 3$ Explain why $y = \frac{1}{x+2}$ is not a continuous function (iii) 1 (iv) Differentiate the following with respect to *x*: $\frac{3x^3 + 2x^2 + x}{x}$ (a) 1 $\frac{1-x}{2x+3}$ (b) 2 $(3+2x)^{3}$ (c) 1

Question 2 (Start a new sheet of paper)

(i) Show that the equation of the tangent to the curve $y = x^3 - 5x + 2$ at the point (-1, 6) is given by 2x + y - 4 = 0

(ii) Consider the curve
$$f(x) = x^3 - x^2 - x + 1$$
. Find the values of x for which $f'(x) = 0$

(iii) Consider the curve
$$xy = 4$$
. Find $\frac{dy}{dx}$ when $x = 2$ 2

(iv) Show that the derivative of
$$y = x\sqrt{2x+1}$$
 is given by $\frac{dy}{dx} = \frac{3x+1}{\sqrt{2x+1}}$ 2

Question 3 (Start a new sheet of paper)

(i)	For the parabola $y = 2x - x^2$, find		
	(a) the equation of the axis of symmetry	1	
	(b) the coordinates of the vertex	1	
(ii)	Solve $(3x-1)^2 = 7$ leaving your answer in surd form.	2	
(iii)	Solve $x^4 - 7x^2 + 12 = 0$	2	
(iv)	What values of <i>m</i> will make the expression $x^2 + 6x + m$ positive definite?	2	
Quest	tion 4 (Start a new sheet of paper)		
(i)	If α and β are the roots of $2x^2 + 3x + 4 = 0$ find the value of $\alpha^2 + \beta^2$.	3	
(ii)	(a) Sketch the graph of $y = x^2 - 6$ and label all intercepts with the axes.	1	
	(b) On the same set of axes, carefully sketch the graph of $y = x $	1	
	(c) Find the coordinates of the two points where the graphs intersect.	2	

(d) Hence solve the inequality
$$x^2 - 6 \le |x|$$
.

Marks

1

Year 12	Mathematics	Task 1 ~ 2008/9				
Question N						
Outcomes Addressed in this Question						
P8 understands and uses the language and notation of calculus						
P7 dete	ermines the derivative of a function through routine application	tion of the rules of differentiation				
Outcome	Sample Solution	Marking Guidelines				
(i) P8	$\lim_{x \to \infty} \frac{3 - 4x}{x^2 - 5x} = \lim_{x \to \infty} \frac{\frac{3}{x^2} - \frac{4}{x}}{1 - \frac{5}{x}} = \frac{0 - 0}{1 - 0} = 0$	1 mark ~ Correct answer				
(ii) P8	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ = $\lim_{h \to 0} \frac{(x+h)^2 - 3 - (x^2 - 3)}{h}$ = $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2 + 3}{h}$ = $\lim_{h \to 0} \frac{2xh + h^2}{h}$ = $\lim_{h \to 0} (2x+h)$ = $2x$	2 mark ~ Correct solution 1 mark ~ Attempt to apply definition				
(iii) P8	$y = \frac{1}{x+2}$ is not a continuous function because at $x = -2$ the function does not exist.	1 mark ~ Correct explanation.				
(iv) (a) P7	$\frac{d}{dx}\left(\frac{3x^3 + 2x^2 + x}{x}\right) = \frac{d}{dx}\left(3x^2 + 2x + 1\right) = 6x + 2$	1 mark ~ Correct answer.				
(b) P7	$\frac{d}{dx}\left(\frac{1-x}{2x+3}\right) = \frac{(2x+3)\cdot(-1-(1-x))\cdot(2x+3)\cdot(2x+3)\cdot(2x+3)}{(2x+3)^2} = \frac{-5}{(2x+3)^2}$	 2 marks ~ Correct solution 1 mark ~ Attempt to use the quotient rule or equivalent. 				
(c) P7	$\frac{d}{dx}\left\{ \left(3+2x\right)^3 \right\} = 3.\left(3+2x\right)^2.2 = 6\left(3+2x\right)^2$	1 mark ~ Correct answer.				

Year 12	Mathematics	Task 1 ~ 2008/9					
Question N	0						
	Outcomes Addressed in this Question	n					
	P6 Relates the derivative of a function to the slope of its graphP7 Determines the derivative of a function through routine application of the rules of differentiation						
P8 Understands and uses the language and notation of calculus							
	H5 Applies appropriate techniques from the study of calculus to solve problems						
Outcome	Solutions	Marking Guidelines					
P6, H5	(i) $y = x^3 - 5x + 2$	2 marks: finding derivative plus gradient of tangent and					
	$\frac{dy}{dt} = 3x^2 - 5$	showing equation given					
	dx						
	When $x = -1$, $\frac{dy}{dx} = 3(-1)^2 - 5 = -2$	1 mark: one of above					
	\therefore gradient of tangent is -2						
	Equation of tangent through $(-1, 6)$ is						
	y - 6 = -2(x+1)						
	y - 6 = -2x - 2						
	\therefore tangent is $2x + y - 4 = 0$						
P8, H5	(ii) $f(x) = x^3 - x^2 - x + 1$						
	$f'(x) = 3x^2 - 2x - 1$	2 marks: putting derivative					
	$f'(x) = 0 \text{ when } 3x^2 - 2x - 1 = 0 \qquad -3 \begin{bmatrix} 1 \\ -3 \\ -3 \end{bmatrix}$ $\therefore 3x^2 - 3x + x - 1 = 0 \qquad -2$	equal to 0 and correctly solving					
	$\therefore 3x^2 - 3x + x - 1 = 0 \qquad -2$	1 mark: one of above					
	$\therefore 3x(x-1)+1(x-1)=0$						
	$\therefore (x-1)(3x+1) = 0$						
	$\therefore x = 1 \text{ or } x = \frac{-1}{3}$						
P8	(iii) $xy = 4$: $y = \frac{4}{x} = 4x^{-1}$						
	X	2 marks: correctly putting in a form which can be differentiated					
	$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$	and correctly finding answer					
	When $x = 2$, $\frac{dy}{dx} = -\frac{4}{2^2} = -1$	1 mark: one of above					
	$dx = 2, dx = 2^2 = 1$						
P7	(iv) $y = x\sqrt{2x+1} = x(2x+1)^{\frac{1}{2}}$						
	Using product rule,	2 marks: correctly use product					
	$\frac{dy}{dx} = x \cdot \frac{d}{dx} (2x+1)^{\frac{1}{2}} + (2x+1)^{\frac{1}{2}} \cdot \frac{d}{dx} (x)$	rule plus function of a function					
	$\frac{dx}{dx} = \frac{dx}{dx} \frac{dx}{dx} + \frac{dx}{dx} + \frac{dx}{dx} \frac{dx}{dx} \frac{dx}{dx}$	rule and correctly simplify to					
	1/2 $1/2$ $1/2$ $1/2$	required form or equivalent					
	$= x \cdot \frac{1}{2} (2x+1)^{-\frac{1}{2}} \cdot 2 + (2x+1)^{\frac{1}{2}} \cdot 1 ($	1 mark: one of above					
	$= x(2x+1)^{-\frac{1}{2}} + (2x+1)^{\frac{1}{2}}$						
	$= (2x+1)^{-\frac{1}{2}} (x+(2x+1)^{1})$						
	$\therefore \frac{dy}{dx} = (2x+1)^{-\frac{1}{2}} (3x+1) = \frac{3x+1}{\sqrt{2x+1}}$						

Year 12	Mathematics	Task 1 ~ 2008/9			
Question N					
	Outcomes Addressed in this (
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric					
	hniques Sample Solution	Morking Cuidelines			
Outcome P4	Sample Solution	Marking Guidelines 1 mark ~ Correct equation of			
14	(i) (a) $x = -\frac{2}{2(-1)}$	the line			
	x = 1				
	(\mathbf{h}) Vartex $(1,1)$	1 mark ~ Correct coordinates of			
	(b) Vertex (1,1)	vertex			
P4	(ii)	2 marks ~ Correct solution			
	$(3x-1)^2 = 7$	1 mark ~ Correct solution not			
	$3x - 1 = \pm \sqrt{7}$	_			
	$3x = 1 \pm \sqrt{7}$	fully simplified eg. $x = \frac{2 \pm 2\sqrt{7}}{6}$			
		0			
	$x = \frac{1 \pm \sqrt{7}}{3}$				
P4	5 (iii)	2 marks ~ All four correct			
1 1	$x^4 - 7x^2 + 12 = 0$	solutions			
	$let \ u = x^2$				
		1 mark ~ Making an			
	$u^2 - 7u + 12 = 0$	appropriate substitution and			
	(u-3)(u-4) = 0	finding solutions 3 and 4.			
	u = 3, 4				
	$\therefore x^2 = 3 \qquad x^2 = 4$				
	$x = \pm \sqrt{3} \qquad x = \pm 2$				
	$\therefore x = \pm \sqrt{3}, \pm 2$				
P4	(iv) For positive definite, $a > 0$ and $\Delta < 0$	2 marks ~ Correct conditions			
	$\Delta = 36 - 4m$	for positive definite and correct			
	36 - 4m < 0	answer for <i>m</i>			
	4 <i>m</i> > 36	1 mark ~ Correct conditions for			
	$\therefore m > 9$	positive definite.			

Year 11/12	Mathematics	Task 1 2008/9			
Question No. 4 Solutions and Marking Guidelines					
	Outcomes Addressed in this Question				
	oses and applies appropriate arithmetic, algebraic, graphica	l, trigonometric and geometric			
	chniques				
H9 com Outcome	nmunicates using mathematical language, notation, diagram				
	Sample Solution	Marking Guidelines 3 marks ~ Correct answer			
(i) P4	$2x^{2} + 3x + 4 = 0$ $\alpha + \beta = -\frac{3}{2}$ $\alpha\beta = \frac{4}{2} = 2$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \left(-\frac{3}{2}\right)^{2} - 2(2)$ $= \frac{9}{4} - 4$ $= -\frac{7}{4}$	2 marks ~ Correctly determines values of $\alpha + \beta$ and $\alpha\beta$ only. 1 mark ~ Correctly determines value of $\alpha + \beta$ or $\alpha\beta$.			
(ii) (a) P4,H9 (b) P4,H9	$-\frac{14}{-12} - \frac{10}{-10} - \frac{10}{-6} - \frac{12}{-10} - \frac{10}{-6} - \frac{12}{-10} - \frac{10}{-10} - \frac{10}{-6} - \frac{12}{-10} - \frac{10}{-10} - \frac{10}$	 (a) 1 mark ~ Correct graph (b) 1 mark ~ Correct graph 			
(c) P4	$x = x^{2} - 6$ $x^{2} - x - 6 = 0$ $(x - 3)(x + 2) = 0$ $x = 3, -2$ However, the graph indicates that $x = 3$ is the only valid solution. By symmetry, the other point of intersection is where $x = -3$. Hence, the points of intersection are (3, 3) and (-3, 3)	2 marks ~ Correct points stated. 1 mark ~ Indicates that $x=3$ and $x=-3$ only.			
(d) P4	From the graph, $-3 \le x \le 3$	1 mark ~ Correct answer.			