

Name : _____

HURLSTONE AGRICULTURAL HIGH SCHOOL YEAR 12 2011 MATHEMATICS ASSESSMENT TASK 1

Examiners: P. Biczo, S. Gee

General Instructions

- Reading time : 3 minutes
- Working time : 40 minutes
- Attempt all questions
- Start a new sheet of paper for each question
- All necessary working should be shown
- This paper contains 4 questions worth 8 marks each. Total Marks: 32 marks
- Marks may not be awarded for careless or badly arranged work
- Board approved calculators may be used
- This examination paper must **not** be removed from the examination room

Question 1 (Start a new sheet of paper)

(a) Evaluate

(i)
$$\lim_{x \to \infty} \frac{x^2 - 3x - 1}{2x^2 - 1}$$
 1

(ii)
$$\lim_{x \to 0} \frac{x}{x^2 - 1}$$
 1
(iii) $\lim_{x \to 1} \frac{x - 1}{x^2 - 1}$ 1

(b) Use the definition of the derivative by first principles,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

to show that if $f(x) = x^2 - 5x$, then f'(x) = 2x - 5

(iii) Draw a sketch of a possible curve that is differentiable in the domain $-a \le x \le a$.

Marks

3

(a) Differentiate, with respect to *x*:

(i)
$$x^4 - 3x^2 + 5$$
 1

(ii)
$$(2x^2+5)^4$$
 1

(iii)
$$\frac{1}{\sqrt{x}}$$
 1

(iv)
$$(x^2+1)(3x-1)^2$$
 using the product rule 2

(b) Write down a version of the chain rule for finding the derivative of a function. 1

Question 3 (Start a new sheet of paper)

(a) Consider the curve $f(x) = x^3 - 6x^2 + 9x + 1$.

(i)	Find the coordinates of any stationary points and determine their nature.	3
(ii)	Sketch the curve, showing this information.	1
(iii)	Find any points of inflexion.	2

(b) By using calculus, show that the curve $y = \frac{3}{x}$ is decreasing for all values of x for which it is defined. Justify your answer. 2

(a) Consider the curve $y = x^2 - 4x + 1$.

answer.

- (i) Show that the gradient of the tangent at x = 4 is 4. 1
- (ii) Find the equation of the normal to the curve at the point where x = 4. 2
- (iii) At what point on the curve is the angle of inclination of the tangent 45° ? 2
- (b) The graph shown is y = f(x). It is given that the only value for x at which f''(x) = 0 is when x = -2.

(1)	For what values of x is $y = f(x)$ increasing?	I
(ii)	For what values of x is $f''(x) < 0$?	1
(iii)	Is the point $(-2,2)$ a horizontal point of inflexion? Justify your	

	Year 12	Mathematics	HSC Task 1 2010/2011					
	Question N	Io.1 & 2 Solutions and Marking	· · · ·					
	Guidelines							
	Outcomes Addressed in this Question P6 relates the derivative of a function to the slope of its graph.							
	P7 determines the derivative of a function through routine application of the rules of differentiation							
	P8 und	lerstands and uses the language and notation of calculus.	F					
	Outcome	Solutions	Marking Guidelines					
		Question 1						
	DO	a						
	rð	$ii) \qquad \frac{x^2 - 3x - 2}{x^2 - x^2 - x^2}$	1 monte mothod loading to					
		$ \begin{array}{c} x \to \infty \\ x \to \infty \end{array} \frac{2x^2}{y^2} - \frac{1}{y^2} \end{array} $	correct answer					
		$1 - \frac{3}{2} - \frac{2}{2}$	concet answer					
	:	$=\lim_{x\to\infty}\frac{1-\frac{x}{x}-\frac{x^2}{x^2}}{2-\frac{x^2}{x^2}}$						
		$x \to \infty 2 - \frac{1}{x^2}$						
		_ 1						
		$=\frac{1}{2}$						
		x x	· · .					
		(ii) $\lim_{x\to 0} \frac{x}{x^2-1}$						
\sim		0	· · ·					
		$=\frac{0}{0-1}=0$	1 mark method leading to					
	·		correct_answer					
		$iii)$ $\lim \frac{x-1}{2}$						
		$x \rightarrow 1$ $x^2 - 1$						
		$=\lim_{x \to 1} \frac{x-1}{x-1}$	· · · · · · · · · · · · · · · · · · ·					
		$\sum_{x \to 1} (x-1)(x+1)$	I mark method leading to					
			correct answer					
		$=\lim_{x\to 1} \frac{1}{x+1} = \frac{1}{2}$						
		b						
		f(x+h) - f(x)						
		$f'(x) = \lim_{h \to 0} \frac{f'(x)}{h}$	· · · · ·					
		$f(x) = x^2 - 5x$						
	P6	f(x) = x - 3x	3 marks correct method leading					
	10	$f(x+h) = (x+h)^{2} - 5(x+h) = x^{2} + 2xh + h^{2} - 5x - 5h$	to correct conclusion					
	· · ·	$x^{2}+2xh+h^{2}-5x-5h-(x^{2}-5x)$						
\sim		$f'(x) = \lim_{h \to 0} \frac{x + 2x^{2} + 1}{h}$	2 marks substantially correct					
		$2-L+L^2$ 5L	Solution					
		$=\lim_{n \to \infty} \frac{2xn+n-5n}{n}$	towards correct solution					
		$h \rightarrow 0$ h						
		$=\lim_{h\to 0} (2x+h-5)$						
• ;:		=2x-5						
• •		c .						
	P5.6	Any continuous smooth curve with end points at $x = -a$						
		and $x = a$.	1 mark suitable curve					
· · ·	· · · ·		1 mark clearly indicated end					
			points.					
5 ¹ 5 1								

· · ·

Question 2 a i) $\frac{d}{dx}(x^4 - 3x^2 + 5) = 4x^3 - 6x$

P7

ii) $\frac{d}{dx} \left[\left(2x^2 + 5 \right)^4 \right] = 4 \left(2x^2 + 5 \right)^3 \times 4x$ $= 16 \left(2x^2 + 5 \right)^3$

 $iii) \qquad \frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = \frac{d}{dx}\left(x^{-\frac{1}{2}}\right)$ $= -\frac{1}{2}x^{-\frac{3}{2}}$ $= \frac{-1}{2\sqrt{x^{3}}}$

iv) Let $y = (x^{2} + 1)(3x - 1)^{2}$ $u = x^{2} + 1$ u' = 2x $v = (3x - 1)^{2}$ v' = 6(3x - 1) $\frac{d}{dx}(uv) = vu' + uv'$ $= (3x - 1)^{2} \times 2x + (x^{2} + 1) \times 6(3x - 1)$ $= 2(3x - 1)(x(3x - 1) + 3(x^{2} + 1))$ $= 2(3x - 1)(6x^{2} - x + 3)$ u = 3x + 5 v = 4 - 5x u' = 3 v' = -5 $\frac{d}{dx}(\frac{u}{v}) = \frac{vu' - uv'}{v^{2}}$ $\frac{d}{dx}(\frac{3x + 5}{4 - 5x}) = \frac{3(4 - 5x) - 5(3x + 5)}{(4 - 5x)^{2}}$ $= \frac{37}{(4 - 5x)^{2}}$

 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

b

1 mark correct answer

1 mark correct answer

1 mark correct answer

2 marks correct method leading to correct answer

1 mark substantially correct solution

2 marks correct method leading to correct answer

1 mark substantially correct solution

I mark correct answer

			ł		
			 1		
Year 11 Mathematics task 1 HSC 2010					
Question	Question No. 4 Solutions and Marking Guidennes				
H5-applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and					
series to so	olve problems		-		
H6-uses th	e derivative to determine the features of the graph of a func-	tion			
P8-underst	ands and uses the language and notation of calculus				
H7-uses th	e features of a graph to deduce information about the deriva	Itive Marking Cuidaling			
Outcome	Solutions 4.	Marking Guidennes			
P6,P8	a)i)				
	$y = x^2 - 4x + 1$	1 mark for complete correct solution			
	$\frac{dy}{dt} = 2x - 4$				
	dx				
	at $x = 4$ $\frac{dy}{dt} = 2(4) - 4 = 4$				
	ax oradient of tangent at $x = 4$ is 4				
			· .		
115	ii)				
11.5	Gradient of tangent is $m_1 = 4$	2 marks for complete correct solution			
	Gradient of normal is $m_1 = -\frac{1}{4}$	I mark for partial correct solution			
:	Equation of normal is:				
	$y-1=-\frac{1}{x-4}$ or equivalent equation				
	4 4				
	iii) Gradient of tangent is $m_1 = \tan 45^\circ = 1$				
H5,P8	dy 2 A				
•	$\frac{dx}{dx} = 2x - 4$	2 marks for complete correct solution			
3	hence $2x-4=1$	1 mark for partial correct solution			
	$x = \frac{5}{2}, y = \left(\frac{5}{2}\right)^2 - 4\left(\frac{5}{2}\right) + 1 = -\frac{11}{2}$	[Students must name both coordinates of			
 	2 - (2) - (2) - 4	աշ բծառյ			
	\therefore The tangent is inclined at an angle of 45° to the curve		$\sum_{i=1}^{n}$		
	(5 11)				
	at the point $\left(\frac{1}{2}, -\frac{1}{4}\right)$.				
•	b)i) $x < -3, x > -1$	1 mont frances by	•		
H6,H7	ii) $x < -2$	1 mark for complete correct solution			
H6. H7		1 mark for complete correct solution			
	iii) No, since it is not a stationary point				
H6, H7	i.e. $\frac{dy}{dx} \neq 0$ at $(-2,2)$.	1 mark for complete energy valuation			
· ·		I MAIN FOI COMPICIC COFFECT SOUTION			