Name : \qquad

HURLSTONE AGRICULTURAL HIGH SCHOOL YEAR 122011 MATHEMATICS ASSESSMENT TASK 1

Examiners: P. Biczo, S. Gee

General Instructions

- Reading time : 3 minutes
- Working time : $\mathbf{4 0}$ minutes
- Attempt all questions
- Start a new sheet of paper for each question
- All necessary working should be shown
- This paper contains 4 questions worth 8 marks each. Total Marks: 32 marks
- Marks may not be awarded for careless or badly arranged work
- Board approved calculators may be used
- This examination paper must not be removed from the examination room

Question 1 (Start a new sheet of paper)

(a) Evaluate
(i) $\lim _{x \rightarrow \infty} \frac{x^{2}-3 x-1}{2 x^{2}-1}$
(ii) $\lim _{x \rightarrow 0} \frac{x}{x^{2}-1}$
(iii) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$
(b) Use the definition of the derivative by first principles,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

to show that if $f(x)=x^{2}-5 x$, then $f^{\prime}(x)=2 x-5$
(iii) Draw a sketch of a possible curve that is differentiable in the domain

$$
-a \leq x \leq a .
$$

(a) Differentiate, with respect to x :
(i) $x^{4}-3 x^{2}+5 \quad 1$
(ii) $\left(2 x^{2}+5\right)^{4} \quad \mathbf{1}$
(iii) $\frac{1}{\sqrt{x}}$
(iv) $\quad\left(x^{2}+1\right)(3 x-1)^{2}$ using the product rule $\quad 2$
(v) $\frac{3 x+5}{4-5 x}$
(b) Write down a version of the chain rule for finding the derivative of a function. $\mathbf{1}$

Question 3 (Start a new sheet of paper)

(a) Consider the curve $f(x)=x^{3}-6 x^{2}+9 x+1$.
(i) Find the coordinates of any stationary points and determine their nature. 3
(ii) Sketch the curve, showing this information.
(iii) Find any points of inflexion.
(b) By using calculus, show that the curve $y=\frac{3}{x}$ is decreasing for all values of x for which it is defined. Justify your answer.
(a) Consider the curve $y=x^{2}-4 x+1$.
(i) Show that the gradient of the tangent at $x=4$ is 4 .
(ii) Find the equation of the normal to the curve at the point where $x=4$.
(iii) At what point on the curve is the angle of inclination of the tangent 45° ?
(b) The graph shown is $y=f(x)$. It is given that the only value for x at which $f^{\prime \prime}(x)=0$ is when $x=-2$.

(i) For what values of x is $y=f(x)$ increasing?
(ii) For what values of x is $f^{\prime \prime}(x)<0$?
(iii) Is the point $(-2,2)$ a horizontal point of inflexion? Justify your answer.

Outcomes Addressed in this Question

P6 relates the derivative of a function to the slope of its graph.
P7 determines the derivative of a function through routine application of the rules of differentiation P8 understands and uses the language and notation of calculus.

Question 2

a
i) $\frac{d}{d x}\left(x^{4}-3 x^{2}+5\right)=4 x^{3}-6 x$
ii) $\quad \begin{aligned} \frac{d}{d x}\left[\left(2 x^{2}+5\right)^{4}\right] & =4\left(2 x^{2}+5\right)^{3} \times 4 x \\ & =16\left(2 x^{2}+5\right)^{3}\end{aligned}$
iii) $\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)=\frac{d}{d x}\left(x^{-\frac{1}{2}}\right)$

$$
=-\frac{1}{2} x^{\frac{-3}{2}}
$$

$$
=\frac{-1}{2 \sqrt{x^{3}}}
$$

iv) Let " $y=\left(x^{2}+1\right)(3 x-1)^{2}$
$u=x^{2}+1 \quad u^{\prime}=2 x$
$v=(3 x-1)^{2} \quad v^{\prime}=6(3 x-1)$
$\frac{d}{d x}(u v)=v u^{\prime}+u v^{\prime}$
$=(3 x-1)^{2} \times 2 x+\left(x^{2}+1\right) \times 6(3 x-1)$
$=2(3 x-1)\left(x(3 x-1)+3\left(x^{2}+1\right)\right)$
$=2(3 x-1)\left(6 x^{2}-x+3\right)$
v) $\frac{d}{d x}\left(\frac{3 x+5}{4-5 x}\right)$
$u=3 x+5 \quad v=4-5 x$
$u^{\prime}=3 \quad v^{\prime}=-5$
$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
$\frac{d}{d x}\left(\frac{3 x+5}{4-5 x}\right)=\frac{3(4-5 x)--5(3 x+5)}{(4-5 x)^{2}}$

$$
=\frac{37}{(4-5 x)^{2}}
$$

1 mark correct answer

1 mark correct answer

1 mark correct answer

2 marks correct method leading to correct answer

I mark substantially correct solution

2 marks correct method leading

1. mark substantially correct solution
b
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$

Year 12 2011 Task 1	Mathematics
Question No. 3	Solutions and Marking Guidelines

Outcomes Addressed in this Question

H6 Uses the derivative to determine features of the graph of a function
H5 applies appropriate techniques from the study of calculus and geometry to solve problems

(iii) Possible points of inflexion at $y^{\prime \prime}=0$
$\therefore 6 x-12=0$
$\therefore x=2$ is a possible point of inflexion.

x	1	2	3
$y^{\prime \prime}$	-6	0	+6

Since the concavity changes, $x=2$ is a point of inflexion
(b) $y=\frac{3}{x}=3 x^{-1}$
$\frac{d y}{d x}=-3 x^{-2}=\frac{-3}{x^{2}}$
Since x^{2} is positive for all values of x (except $x=0$
where it is undefined), $\frac{d y}{d x}$ is negative for all $x \neq 0$.
$\therefore y$ is decreasing.

