QUES	STION	1 (12 Marks)	Marks
(a)	Consider the parabola $(x-4)^2 = 8(y+3)$.		
	(i)	State the co-ordinates of the vertex	1
	(ii)	Find the focal length.	1
	(iii)	Find the co-ordinates of the focus	1
	(iv)	Find the equation of the directrix.	1
(b)	Re-wr	Finite $y = x^2 + 4x + 3$ in the form $(x - h)^2 = 4a(y - k)^2$.	2
(c)	A parabola has its focus at the point $(2, -1)$ and directrix $y = 3$.		
	Find (i)	the focal length.	1
	(ii)	the co-ordinates of the vertex.	1
	(iii)	the equation of the parabola.	2
(d)	Sketch $A(3,1)$	In the locus of the point $P(x,y)$, where P is 3 units from the point of and hence write down its equation,	2
QUES	STION	2 (14 Marks) Start this question on a new page.	
(a)	Consider the curve $y = \frac{x^3}{3} - 4x$		
	(i)	Show that $\frac{dy}{dx} = x^2 - 4$	1
	(ii)	Find the points where the curve crosses the axes.	2
	(iii)	Find the coordinates of any stationary points and determine their nature.	3
	(iv)	Find any points of inflection. (Change in concavity must be sho	wn.) 2
	(v)	Draw a graph of this function (about 1/2 page.)	2
	(vi)	Find the equation of the tangent to this curve at the point $(3,-3)$. 2
(b)	Sketch $f(3) =$	the graph of $y = f(x)$ such that = 5, $f'(3) = 0$, $f'(x) > 0$ for $x < 3$ and $f'(x) < 0$ for $x > 3$.	2

Continued page 2

3

QUESTION 3 (12 marks)

Start this question on a new page. Marks

Draw or trace the graph y = f(x), above, on your writing paper. On the same diagram, draw a graph of y = f'(x), the derivative of the function, indicating the points A, B and C.

An open rectangular box has four sides and a base, but no lid, as in the (b) figure below.

The dimensions of the base of the box are x cm by 2x cm and the height is y cm.

- Write down the formula for the external surface area $A \text{ cm}^2$ of the box in (i) 2 its simplest form.
- Write down the formula for the volume $V \text{ cm}^3$ contained by the box in (ii) 2 its simplest form.
- (iii) Given that the surface area, A, of the box is 150 cm^2 , show that the 2 formula for the volume in terms of x is $V = \frac{150x - 2x^3}{3}$.

(iv) Find the value of x for which V is a maximum, and verify that the **3** maximum value of V is
$$\frac{150}{3}$$
 cm³.

End of Paper.

11 Mathematics 2007 Yearly JUESTION 1 $(a)(i)(x-4)^2 = 8(y+3)$ So At vertex: $\chi - 4 = 0$ x = 4 y + 3 = 0 y = -3. Vertex qt(4, -3) ① (ii) 4 a = 8 ai : focal length is 2 0 (111) focus is a units above vertex (concave up) : focus is (4,(-3+2)) = (4 - 1) 0(iv) directrix is a units below vertex : directrix is y=-3-2 1. y= -5 0 (b) $y = x^2 + 4x + 3$ $50 x^2 + 4x + 4 = y + 1$ $(7+2)^2 = 9+1$ (1) for RHs for 4(4)(9+1)LHS

QUESTION 2 a) i) $y = \frac{x^3}{3} - 4x$ $\frac{x^{3}}{3} - 4_{22} = 0 \qquad \therefore \qquad x^{20} = 0$ $\frac{x^{2}}{3} - 4_{22} = 0 \qquad (1)$ $\frac{x^{2}}{3} - 4 = 0$ $\frac{x^{2}}{3} - 4 = 0$ $\frac{1}{2}$ x = 12 $\therefore y' = \frac{3x^2}{3} - 4$ $\kappa = \frac{1}{2}\sqrt{3}$.. Crosses at -2/3 0 2/3 $y' = x^2 - 4$ (\mathbf{i}) iii) Stationery Parts der y'=0 Also y" = 2x $\therefore y''(2) = 4 \qquad y''(-2) = -4$ ∴ ² - 4 = 0 >0 20 ... M.n ... Max (1) $x^2 = 4$ $x=\pm 2$ (1) : (2 - 53) is a minimum turning point (-2,53) is a maximum turning point (1) i) Points of inflexion when y"=0 · Since concevity changes $\therefore 2>2 = 0$ x -1 0 1 x = 0 (1) f"(x) - 2 0 2 (0,0) is a point of inflexion (2,53) 20 (1) vi) Guer (3,-3) y'= x2 - 4 when x=3 (2) y' = 9-4 y' = 5 (1) m=5 (3,-3) 4+3 = 5(22-3) 4+3 = 522-15 -1 y = 522-18 (1) (3,5) 7(1) 6) (2,-55) (1) for concare

QUESTION THREE Given A = 150 = bay + 222 Dfre) $bxy = 150 - 2x^{2}$ $y = \frac{150 - 2x^{2}}{4x}$ $=\frac{2(75-2)}{2}$ 3×7 $y = \frac{75 - 2^2}{37}$ pila) Sub into y $V(x,y) = 2x^{2}y$ $V(x) = 2x^{2}\left(\frac{75-x^{2}}{3x}\right)$ C <u>~</u> 7 $=\frac{22}{32}\left[75-2^{2}\right]$ $V(\pi) = \frac{150\pi - 2\pi^3}{3}$ (b) Surface Area = DED 2x (=,y) + 2(27. y) + (22. z) Sides Front Back bottom: For MAX/MIN' FINd V'(2)=0 A(x,y) = 2xy + 4xy + 2x2 $V(x) = \frac{150x}{3} - \frac{2x^3}{3}$ A(x,y)= 6 xy + 2 x 2 $\gamma'(z) = 150 - 2.3z^2$ $V'(x) = \frac{150}{3} - 2x^2 = 0$ 1) Valum = 1 × 10 × 4 J-or MAX JAIN V(x,y) = (2x).(x).(y) $\therefore at 2r^2 = \frac{150}{3}$ $\chi^2 = \frac{25}{3} \chi^2 = 25$ V(x,y) = 2x2 y 7 573 SINCE x>0 R=\$\$\$5 $\sqrt{\frac{5\sqrt{3}}{3}} = \frac{\sqrt{50}}{3} \cdot \left(\frac{5\sqrt{3}}{3}\right) - \frac{2}{3}$ 150 $V(5) = \frac{150(5) - 2(5)^3}{2}$ 500