QUESTION 1 (12 Marks)

(a) Consider the parabola $(x-4)^{2}=8(y+3)$.
(i) State the co-ordinates of the vertex 1
(ii) Find the focal length. 1
(iii) Find the co-ordinates of the focus 1
(iv) Find the equation of the directrix. $\mathbf{1}$
(b) Re-write $y=x^{2}+4 x+3$ in the form $(x-h)^{2}=4 a(y-k)^{2}$. $\quad 2$
(c) A parabola has its focus at the point $(2,-1)$ and directrix $y=3$.

Find
(i) the focal length. 1
(ii) the co-ordinates of the vertex. $\mathbf{1}$
(iii) the equation of the parabola. $\mathbf{2}$
(d) Sketch the locus of the point $P(x, y)$, where P is 3 units from the point $A(3,1)$ and hence write down its equation,

QUESTION 2 (14 Marks) Start this question on a new page.
(a) Consider the curve $y=\frac{x^{3}}{3}-4 x$
(i) Show that $\frac{d y}{d x}=x^{2}-4$

1
(ii) Find the points where the curve crosses the axes.

2
(iii) Find the coordinates of any stationary points and determine
their nature.
(iv) Find any points of inflection. (Change in concavity must be shown.)
(v) Draw a graph of this function (about $1 / 2$ page.)

2
(vi) Find the equation of the tangent to this curve at the point ($3,-3$).
(b) Sketch the graph of $y=f(x)$ such that

QUESTION 3 (12 marks) Start this question on a new page. Marks
(a)

Draw or trace the graph $y=f(x)$, above, on your writing paper. On the same diagram, draw a graph of $y=f^{\prime}(x)$, the derivative of the function, indicating the points A, B and C .
(b) An open rectangular box has four sides and a base, but no lid, as in the figure below.

The dimensions of the base of the box are $x \mathrm{~cm}$ by $2 x \mathrm{~cm}$ and the height is $y \mathrm{~cm}$.
(i) Write down the formula for the external surface area $A \mathrm{~cm}^{2}$ of the box in its simplest form.
(ii) Write down the formula for the volume $V \mathrm{~cm}^{3}$ contained by the box in its simplest form.
(iii) Given that the surface area, A, of the box is $150 \mathrm{~cm}^{2}$, show that the formula for the volume in terms of x is $V=\frac{150 x-2 x^{3}}{3}$.
(iv) Find the value of x for which V is a maximum, and verify that the maximum value of V is $\frac{150}{3} \mathrm{~cm}^{3}$.

End of Paper.

11 Mathematics 2007 Yearly
Question 1
(a)(i) $(x-4)^{2}=8(y+3)$
so vertex:

$$
\begin{aligned}
& x-4=0 \\
& x=4 \\
& y+3=0 \\
& y=-3
\end{aligned}
$$

\therefore vertex at $(4,-3)$ (1)
(ii)

$$
\begin{aligned}
4 a & =8 \\
a & =2
\end{aligned}
$$

\therefore focal length is 2 (1)
(iii) focus is a units above vertex (concave up)
\therefore focus is $(4,-3+2))$

$$
=(4,-1)
$$

(iv) directrix is a units below vertex
\therefore directrix is $y=-3-2$
i. $y=-5$ (1)
(b)

$$
\begin{aligned}
& y=x^{2}+4 x+3 \\
& \text { So } x^{2}+4 x+4=y+1 \\
& \left.\begin{array}{rl}
(x+2)^{2} & =y+1 \\
\text { (1) } & =4\left(\frac{2}{f}\right)(y+1) \\
\text { for } \\
\text { LbS }
\end{array}\right\} \text { (1) for RHS }
\end{aligned}
$$

(c)

(i) Distance from focus to directrix is $2 a$

So

$$
\begin{aligned}
2 a & =3-(-1) \\
& =4 \\
a & =2
\end{aligned}
$$

\therefore focal length is 2 .
(1)
(ii) The parabola is concave down.

The vertex halfway between the focus and directrix. ie. at $\left(2, \frac{-1+3}{2}\right)$ or focus plats a units up.

$$
\begin{equation*}
=(2,1) \tag{1}
\end{equation*}
$$

(iii) $(x-k)^{2}=4 a(y-k)$
sub. in vertex and focal length.

$$
\left.\begin{array}{l}
(x-2)^{2}=-8(y-1) \\
x^{2}-4 x+8 y-4=0
\end{array}\right\} \text { either }
$$

(2) - 1 mark if mus sign left out for concave down
(d)

(1) circle must touch y-axis

$$
\left.\begin{array}{l}
(x-3)^{2}+(y-1)^{2}=9 \tag{1}\\
x^{2}-6 x+y^{2}-2 y+1=0
\end{array}\right\} \text { either }
$$

a) i) $y=\frac{x^{3}}{3}-4 x$
ii) $\frac{x^{3}}{3}-4 x=0$

$$
\therefore y^{\prime}=\frac{3 x^{2}}{3}-4
$$

$$
\begin{equation*}
x\left(\frac{x^{2}}{3}-4\right)=0 \tag{1}
\end{equation*}
$$

$$
x^{2}=12
$$

$$
\begin{equation*}
y^{\prime}=x^{2}-4 \tag{1}
\end{equation*}
$$

(1)
\therefore Crasses at $-2 \sqrt{3}, 0,2 \sqrt{3}$ $x= \pm 2 \sqrt{3}$
iii) Stathonary Pouts hen $y^{\prime}=0$

$$
\text { Also } y^{\prime \prime}=2 x
$$

$$
\therefore \quad x^{2}-4=0
$$

(1)
$\therefore M_{\text {M }}$
\therefore Max
$\therefore\left(2,-5 \frac{1}{3}\right)$ is a mininum turnig point $\left(-2,5 \frac{1}{3}\right)$ is a maximom turming point
is) Pouts of inflexion. whon $y^{\prime \prime}=0$
$\therefore 2 x=0 \quad x \quad-1 \quad 0 \quad$ s.ree coneauity harges $\begin{array}{rlll}x=0 \quad(1) \quad f^{\prime \prime}(x) & -2 \quad 0 & 2 \\ <0 \quad \text { (1) }\end{array}$

b)

(1) for cuncave

QLIESTION THKEE
(11)

Guren

$$
\begin{aligned}
& A=150=6 x y+2 x^{2} \\
& \therefore \quad 6 x y=150-2 x^{2} \\
& y=\frac{150-2 x^{2}}{6 x} \\
&=\frac{2\left(75-x^{2}\right)}{3 x x^{2}} \\
& y=\frac{75-x^{2}}{3 x}
\end{aligned}
$$

Sub into V

$$
\begin{aligned}
& V(x, y)=2 x^{2} y \\
& V(x)=2 x^{2}\left[\frac{75-x^{2}}{3 x}\right] \\
&=\frac{2 x^{2}}{3 x}\left[75-x^{2}\right] \\
& V=\frac{150 x-2 x^{3}}{3} \\
& V E D
\end{aligned}
$$

(b) Surface trese =

$$
2 x(x, y)+2(2 x y)+(2 x, x)
$$

$\overrightarrow{\text { sides }}$ Frouthach bottions:

$$
\begin{aligned}
& A(x, y)=2 x y+4 x y+2 x^{2} \\
& A(x, y)=6 x y+2 x^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& V \text { Vfume }=2 \times w \times 4 \\
& V(x, y)=(2 x) \cdot(x) \cdot(y) \\
& V(x, y)=2 x^{2} y
\end{aligned}
$$

MAX/MNN Find $V^{\prime}(x)=0$

$$
\begin{aligned}
& \gamma(x)=\frac{150 x}{3}-\frac{2 x^{3}}{3} \\
& \gamma^{\prime}(x)=\frac{150}{3}-2 \cdot \frac{3 x^{2}}{3} \\
& V^{\prime}(x)=\frac{150}{3}-2 x^{2}=0
\end{aligned}
$$

$$
\therefore a t 2 x^{2}=\frac{150}{3}
$$

$$
x^{2}=\frac{25}{3} \quad x^{2}=25
$$

$$
\frac{5}{3} x= \pm 5
$$

Since $x>0$

$$
\begin{aligned}
\therefore x & \therefore=\frac{5 \sqrt{3}}{3} \\
V\left(\frac{5 \sqrt{3}}{3}\right) & =\frac{150}{3} \cdot\left(\frac{5 \sqrt{3}}{3}\right)-\frac{2}{3}\left(\frac{5 \sqrt{3}}{3}\right)^{3} \\
& =\frac{550}{3} \\
V(5) & =\frac{150(5)-2(5)^{3}}{3} \\
& =\frac{500}{3}
\end{aligned}
$$

