Question 1 (10 marks) Use a SEPARATE writing booklet
(a) Use $\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find the derivative of $y=x^{2}-3 x$.
(b) Differentiate:
(i) $3 x^{3}-\frac{x}{2}+7$
(ii) $\sqrt{x^{2}-1}$
(iii) $\frac{x^{2}}{1-3 x}$.
(c) Find the equation of the tangent to the curve $y=\frac{1}{x}$ at the point where $x=2$.

Question 2 (10marks) Use a SEPARATE writing booklet
(a) If α and β are the roots of the equation $9 x^{2}+3 x-2=0$, find the values of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(b) Find the values of p for which the quadratic equation $x^{2}+3 x+p=0$ has equal roots.
(c) Solve for $x \quad\left(2^{x}\right)^{2}-9\left(2^{x}\right)+8=0$.
(d) Solve the inequality $x^{2}-4 x>0$.

Question 3 (10marks) Use a SEPARATE writing booklet Marks

The equation of a curve is given by $y=x^{3}-3 x^{2}+1$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Determine if there are any points of inflexion and if so, find their coordinates.
(iii) Sketch the curve for $-1 \leq x \leq 3$, showing stationary points and any points of inflexion.
(iv) For what values of x is the curve concave down?
(v) Use your sketch to determine what values of k will the equation $x^{3}-3 x^{2}+1-k=0$ have 3 distinct solutions in the domain $-1 \leq x \leq 3$?
(a) Determine the values of A, B and C in

$$
x^{2}-3 x+5 \equiv A(x-1)^{2}+B(x-1)+C
$$

(b) Copy the sketch of $y=f(x)$. Sketch a possible graph of $y=f^{\prime}(x)$ on it.

(c) A $6 m$ by $6 m$ square sheet of metal has smaller $x m$ by $x m$ squares cut from its corners as shown below. The sheet is bent into an open box.
(i) Use a diagram to help show that the volume of the box is given

$$
\text { by } \quad V(x)=x(6-2 x)^{2} m^{3} . \quad \mathbf{1}
$$

(ii) What sized squares should be cut out to produce the box of greatest capacity?

Question 1

$$
\text { Yr } 11 \text { Maths HSC Ass1 } 2010
$$

(a)

$$
\begin{aligned}
y & =x^{2}-3 x \\
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)-x^{2}+3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3\left(x-3 h-x^{x}+3 x x\right.}{L} \\
& =\lim _{h \rightarrow 0} \frac{K(2 x+h-3)}{h} \\
& =2 x-3
\end{aligned}
$$

(b) (i) $\frac{d\left[3 x^{3}-\frac{x}{2}+7\right]}{d x}=9 x^{2}-\frac{1}{2}$
(i)

$$
\begin{aligned}
&\left.\frac{d x}{d x}\left(x^{2}-1\right)^{\frac{1}{2}}\right] \\
& d x=\frac{1}{2}\left(x^{2}-1\right)^{-\frac{1}{2}} \cdot 2 x \\
&=\frac{x}{\sqrt{x^{2}-1}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d\left[\frac{x^{2}}{1-3 x]}\right.}{d x} & =\frac{(1-3 x) \cdot 2 x-x^{2} \cdot-3}{(1-3 x)^{2}} \\
& =\frac{2 x-6 x^{2}+3 x^{2}}{(1-3 x)^{2}} \\
& =\frac{2 x-3 x^{2}}{(1-3 x)^{2}}
\end{aligned}
$$

(iii)
(c)

$$
\begin{aligned}
y & =\frac{1}{x} \\
y & =x^{-1} \\
\frac{d y}{d x} & =-x^{-2} \\
& =\frac{-1}{x^{2}} \\
\therefore \text { when } x & =2, \frac{d y}{d x}=-\frac{1}{4}
\end{aligned}
$$

\therefore Eguation of tangect

$$
\begin{aligned}
& y-\frac{1}{2}=-\frac{1}{4}(x-2) \\
& 4 y-2=-x+2
\end{aligned}
$$

$$
x+4 y-4=0
$$

Q_{2}
(a) $9 x^{2}+3 x-2=0$
(i) $\alpha+\beta=-\frac{1}{3}$
(ii) $\alpha \beta=-\frac{2}{9}$
(iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\frac{1}{9}+\frac{k}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

(b)

$$
x^{2}+3 x+p=0
$$

$$
\Delta=0 \text { equalroots }
$$

$$
\begin{aligned}
\therefore b^{2}-8 a c & =0 \\
9-4 p & =0 \\
p & =\frac{9}{4}
\end{aligned}
$$

(c)

$$
\begin{gathered}
\left(2^{x}\right)^{2}-9\left(2^{x}\right)+8=0 \\
\left(2^{x}-8\right)\left(2^{x}-1\right)=0 \\
2^{x}=8-2^{x}=1 \\
x=0,3
\end{gathered}
$$

(d)

$$
\begin{aligned}
x^{2}-4 x & >0 \\
x(x-4) & >0 \\
\therefore x & >4 \text { or } x<0
\end{aligned}
$$

Q3 $\quad y=x^{3}-3 x^{2}+1$
(i) $\frac{d y}{d x}=3 x^{2}-6 x$

Lt $\frac{d y}{d x}=0$ to fid stpt.

$$
\begin{gathered}
3 x(x-2)=0 \\
x=0,2
\end{gathered}
$$

\therefore It otsat $(0,1)$ and $(2,-3)$ If Bathcororivates.

$$
\begin{aligned}
& \frac{d^{2} y}{r x^{2}}=6 x-6 \\
& \text { when } x=0 \frac{d^{2} y}{d x^{2}}<0 \therefore \max a t(0,1) \\
& \text { when } x=2 \frac{d^{2} y}{d x^{2}}>0 \therefore \operatorname{Mm} \quad t(2,-3)
\end{aligned}
$$

(ii) Lt $\frac{d^{2} y}{\Delta x^{2}}=0$ Ggid pato of inflecaion

$$
\begin{aligned}
& 6 x-6=0
\end{aligned}
$$

(IV) $x<1$ coname down $\left[\frac{d y}{d x^{2}}<0\right]$
(V)

$B 4(a)$

$$
\begin{aligned}
& x^{2}-3 x+5=A(x-1)^{2}+B(x-1)^{2}+C \\
& A=1 \quad\left[\operatorname{cef} f f x^{2}+1\right] \\
& \text { Cet } x=1 \quad \therefore 1-3+5=C \\
& C=3
\end{aligned}
$$

let $x=0 \therefore 5=A-B+C$
(b)

$$
\therefore \quad 5=1 \bar{F} B+3
$$

(c) (i)

(ii)

$$
\begin{aligned}
V(x) & =x(6-2 x)^{2} \\
V^{\prime}(x) & =(6-2 x)^{2}-4 x(6-2 x)=(6-2 x)^{2}-2 x+8 x^{2} \\
& =(6-2 x)[6-2 x-4 x] \\
& =(6-2 x)[6-6 x] \quad \text { Nax when } x=1
\end{aligned}
$$

$$
\begin{aligned}
& (6-2 x)[6-6 x] \\
& \therefore x=3,1
\end{aligned}
$$

$$
\begin{aligned}
& V^{\prime \prime}(x)=-4(6-2 x)-24+16 x \\
& V^{\prime \prime}(1)=-4 \times 4-24+16<0 \quad V^{\prime \prime}(3)=-4(6-6)-24+68>0
\end{aligned}
$$

