Year 11 Mathematics

Question 1 (10 marks) Use a SEPARATE writing booklet

(a) Use
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 to find the derivative of $y = x^2 - 3x$. 2

(b) Differentiate:

(i)
$$3x^3 - \frac{x}{2} + 7$$
 1

(ii)
$$\sqrt{x^2 - 1}$$
 2

(iii)
$$\frac{x^2}{1-3x}$$
. 2

Find the equation of the tangent to the curve $y = \frac{1}{x}$ at the point where x = 2. 3 (c)

Question 2 Use a SEPARATE writing booklet (10marks)

(a) If α and β are the roots of the equation $9x^2 + 3x - 2 = 0$, find the values of:

(i)
$$\alpha + \beta$$

(ii) $\alpha\beta$

(iii)
$$\alpha^2 + \beta^2$$
 2

Find the values of p for which the quadratic equation $x^2 + 3x + p = 0$ has equal roots. (b)

2

(c) Solve for x
$$(2^x)^2 - 9(2^x) + 8 = 0.$$
 2

(d) Solve the inequality
$$x^2 - 4x > 0$$
. 2

Newington College		Year 11 Mathematics	HSC Assessment 1 2010	
Question 3	(10marks)	Use a SEPARATE writing bo	<u>oklet</u>	Marks
The equation	of a curve is g	given by $y = x^3 - 3x^2 + 1$.		
(i)	Find the coor	rdinates of the stationary points a	and determine their nature.	3
(ii)	Determine if	there are any points of inflexion	and if so, find their coordinates.	2
(iii)	Sketch the cu of inflexion.	arve for $-1 \le x \le 3$, showing state	ionary points and any points	2
(iv)	For what val	ues of x is the curve concave dow	vn?	1
(v)	Use your ske $x^3 - 3x^2 + 1$	etch to determine what values of $-k=0$ have 3 distinct solution	<i>k</i> will the equation s in the domain $-1 \le x \le 3$?	2

$$x^{2} - 3x + 5 \equiv A(x-1)^{2} + B(x-1) + C$$
3

2

(b) Copy the sketch of y = f(x). Sketch a possible graph of y = f'(x) on it.

- (c) A 6 *m* by 6 *m* square sheet of metal has smaller *x m* by *x m* squares cut from its corners as shown below. The sheet is bent into an open box.
 - (i) Use a diagram to help show that the volume of the box is given

by $V(x) = x(6-2x)^2 m^3$. 1

(ii) What sized squares should be cut out to produce the box of greatest capacity? 4

Quarticity 1
(a)
$$y = x^{2} - 35C$$

 $dy = \lim_{h \to 50} \frac{(x+h)^{2} - 3(x+h) - x^{2} + 35S}{h}$
 $= \lim_{h \to 50} \frac{(x+h)^{2} - 3(x+h) - x^{2} + 35S}{L}$
 $= \lim_{h \to 50} \frac{x^{2} + 2xh + h^{2} - 3(x^{2} - 3h) - x^{2} + 2x}{L}$
 $= \lim_{h \to 50} \frac{x^{2} - 2x - 3}{K}$
(b) (i) $d\int [3x^{2} - \frac{x}{2} + 7] = 9x^{2} - \frac{1}{2} \sqrt{2}$
(ii) $d\int \frac{[(x^{2} - 1)^{\frac{1}{2}}]}{dx} = \frac{1}{2}(x^{2} - 1)^{\frac{1}{2}} \cdot 2x \sqrt{2}$
 $= \frac{1}{12x^{2} - 1}$
(iii) $d\int \frac{[x^{2} - 1]}{2x^{2}} = \frac{(1 - 3x)(2x - \frac{x^{2} - 3}{2})}{dx}$
 $= \frac{25x - 6x^{2} + 3x^{2}}{(1 - 3x)^{2}}$
 $= \frac{2x - 3x^{2}}{(1 - 3x)^{2}}$

(c)
$$Y = \frac{1}{2k}$$

 $y = x^{-1}$
 $\frac{dy}{dx} = -x^{-2}$
 $\frac{dx}{dx} = -\frac{1}{2k^{2}}$
 \therefore when $x=2$, $\frac{dy}{dx} = -\frac{1}{4}$
 \therefore Equation of tempert
 $y - \frac{1}{2} = -\frac{1}{4}(x-2)$
 $4y - 2 = -x + 2$
 $x + 4y - 4 = 0$

 $(a) 9x^2+3x-2=0$ (i) x+B = -1/3 $(ii) \neq B = -\frac{2}{9} \checkmark$ $(ii) \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta /$ = 台卡島 = 5 (b) $5c^2 + 3pc + p = 0$ S = 0 equatroots

 $\frac{b^2 - 4ac}{p = 9}$

(C) $(2^{\alpha})^{2} - G(z^{\alpha}) + 8 = 0$ $(z^{\times}-8)(z^{\times}-1)=0$ $2^{2^{c}} = 8 - 2^{2^{c}} = 1$ x = 0, 3

Q3
$$y = x^{2} - 3x^{2} + 1$$

(i) $\frac{d_{3}}{dx} = 3x^{2} - 6x$
(d) $\frac{d_{3}}{dx} = 0$ to find St pt.
 $3x(x-2) = 0$
 $x = 0, 2$
 \therefore St obsect (0,1) and (2, -3) (Rothermaticton
 $\frac{d^{3}}{dx} = 6x - 6$
 $when x = 0$ $\frac{d_{3}}{dx} < 0$ \therefore mix $d(0,1)$ (Test)
 $when x = 2$ $\frac{d_{3}}{dx} = 0$ \therefore mix $d(2, -3)$
(i) $\frac{d_{3}}{dx} = 0$ to find ptof influence
 $6x - 6 = 0$
 $x = 1$ \therefore $d(1, -1)$ $x_{21} \frac{(0,1)}{(1, -1)}$
(iv) $\chi < 1$ Groundown [$\frac{d_{3}}{dx} < 0$]
(iv) $\chi < 1$ Groundown [$\frac{d_{3}}{dx} < 0$]
(iv) $\chi < 1$ Groundown [$\frac{d_{3}}{dx} < 0$]
(v) $(0, 0)$
(v) $(-1, 3)$ (2, -3) (2, -3) (2, -3)

 $Q_{4}(\alpha) = 2^{2} - 3x + 5 = A(x - 1)^{2} + B(x - 1)^{4} + C$ A=1 E coeffatzis 1] letx=1 ... 1-3+5 = C c=3/ 6+ X=0 ... 5 = A=B+C 5=1FB+3 2y=5(50) Ð (i)6-2x 6-2x 6-2x 6-2x 6-2x 7 6-2x 6-2x $\frac{1}{2}$ (\tilde{i}) $V(x) = x(6-2x)^{2}$ $V'(x) = (6-2x)^2 - 4x(6-2x) = (6-2x)^2 - 24x + 8x^2$ = (6-2x)[6-2x-4x] X = 3, 1x = 3, 1 $z_{a} = 2/1.111$ = (6-2x)[6-6x] squares/mby/m V/x) = -4(6-2x) - 24+16xV'(1)=-6x4-24+16<0V'(3)=-4(6-6)-24+6870