YEAR 11, HSC MATHEMATICS - ASSESSMENT 1

Question 1 (13 marks)

(a) Determine a quadratic equation in general form with roots equal to 2 and -1 .
(b) Differentiate each of the following
i) $\sqrt{6 x-5}$
ii) $3 x(2 x-1)^{2}$
(c) If α and β are the roots of the equation $2 x^{2}+3 x+5=0$, find the value of
i) $\alpha+\beta$
ii) $\alpha \beta$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
iv) $\alpha^{2}+\beta^{2}$

Question 2 (14 marks)

(a) Consider the parabola with equation $x^{2}=-8(y+3)$
i) Find the coordinates of the vertex of the parabola.
ii) Find the coordinates of the focus of the parabola.
(b) Solve the quadratic inequality $2 x^{2}-x-10 \leq 0$
(c) Find two numerical values of p so that $x^{2}+2 p x+(7 p+8)=0$ has equal roots.
(d) Solve the equation $\left(x^{2}-x\right)-18\left(x^{2}-x\right)+72=0$

Question 3 ($\mathbf{1 5}$ marks)
(Start a new page)
(a) Find the value of m if one root of the equation $x^{2}+6 x+m=0$ is double the other.
(b) Find the values of A, B, and C if $x^{2}-x \equiv A(x-4)^{2}+B(x-4)+C$.
(c) Let A and \mathbf{B} be the fixed points $(-1,0)$ and $(2,0)$ and let P be the variable point (x, y).
(i) Write down expressions for the distances $P A^{2}$ and $P B^{2}$
(ii) Suppose that P moves so that $P A=2 P B$. Show that the equation of this locus of points is the circle $x^{2}-6 x+y^{2}+5=0$
(iii) Hence find the centre and radius of the circle.
maths
Q1 a) $(x-2)(x+1)=x^{2}-x-2=0$
b) i) $\frac{d}{d x}(6 x-5)^{\frac{1}{2}}=\frac{1}{2}(6 x-5)^{-\frac{1}{2}} \times 6$
ii)

$$
\begin{aligned}
\frac{d}{d x} 3 x(2 x-1)^{7} & =3(2 x-1)^{7}+3 x \times 7(2 x-1)^{6} \\
& =3(2 x-1)^{7}+21 x(2 x-1)^{6}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{d}{d x} \frac{x}{2 x-3} & =\frac{2 x-(2 x-3) \times 1}{(2 x-3)^{2}} \\
& =\frac{3}{(2 x-3)^{2}}
\end{aligned}
$$

c)
i) $\alpha+\beta=\frac{-b}{a}=\frac{-3}{2} \quad V$
ii)

$$
\alpha \beta=\frac{c}{a}=\frac{5}{2}
$$

iii)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\beta+\alpha}{\alpha \beta} \\
& =\frac{-3 / 2}{5 / 2} \\
& =-\frac{3}{2} \times \frac{2}{5} \\
& =-3 / 5
\end{aligned}
$$

ir)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(-3 / 2)^{2}-2 \times \frac{5}{2} \\
& =\frac{9}{4}-5 \\
& =-\frac{11}{4}
\end{aligned}
$$

Maths

$$
Y_{n} \| H S C A_{s S} 12011
$$

$Q 2$
a)

focus $(0,-5)$
b)

$$
\begin{aligned}
& a=2 \\
& (y-5)^{2}=8(x-4) \\
& a=2 \\
& \text { vertex }(4,5) \\
& (y-k)^{2}=4 a(x-h)^{2}
\end{aligned}
$$

c)

$$
\begin{gathered}
2 x^{2}-x-10 \leq 0 \\
P-20 \\
5-1 \\
F-5,4 \\
2 x^{2}-5 x+4 x-10 \leq 0 \\
x(2 x-5)+2(2 x-5) \leq 0 \\
(2 x-5)(x+2) \leq 0 \\
-2 \leq x \leq 2 \frac{1}{2}
\end{gathered}
$$

2 marks for factorising, 1 mart for answer.
d) Let $u=s^{2 x}$

$$
\begin{aligned}
& u^{2}-6 u+5=0 \\
& (u-1)(u-5)=0 \\
& u \leqslant 1, u=5 \\
& 5^{x}=1 \quad 5^{x}=5 \\
& x=0 \quad x=1
\end{aligned}
$$

Question 3
a)

$$
\begin{aligned}
& \text { let } u=5^{x} \\
& u^{2}-6 u+5=0 \\
& (u-1)(u-5)=0 \\
& u=1, \quad u=5 \\
& 5^{x}=1 \\
& x=0,5^{x}=5 \\
&
\end{aligned}
$$

b) Let the root be $\alpha \times 2 \alpha$

$$
\begin{array}{rlrl}
\alpha+2 \alpha & =\frac{-6}{1} \gamma & \alpha \times 2 \alpha & =\frac{m}{1} \\
3 \alpha & =-6 & -2 x-4 & =m \\
\alpha & =-2 & m & =8
\end{array}
$$

c)

$$
\begin{gathered}
A=b^{2}-4 a c=0 \\
(2 \rho)^{2}-4(7 \rho+8)=0 \\
4 \rho^{2}-28 \rho-32=0 \\
\rho^{2}-7 \rho-8=0 \\
(\rho-8)(\rho+1)=0 \\
\rho=8 a r-1
\end{gathered}
$$

Q4
a)

$$
\begin{aligned}
& x^{2}-x \equiv A(x-4)^{2}+B(x-4)+C \\
& x^{2}=A x^{2} \quad A=1 \\
& x^{2}-x \equiv(x-4)^{2}+B(x-4)+C
\end{aligned}
$$

Let $x=4$

$$
\begin{aligned}
&=4 \\
& 16-4=0+0+c \\
& c=12 \\
& x^{2}-x \equiv(x-4)^{2}+B(x-4)+12
\end{aligned}
$$

Let $x=0$

$$
\begin{aligned}
& 0 \equiv 16-4 B+12 \\
& 4 B=28 \\
& B=7 \\
& A=1, \quad B=7, \quad C=12
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-x=(x-4)^{2}+B(x-B)+C \\
& =x^{2}-8 x+16+B x-4 B+C \\
& =x^{2}-8 x+B x+16-4 B+C \\
& =x^{2}+x(B-8)+16-4 B+C \\
& \therefore B-g=-1 \\
& \quad B=7 \\
& \therefore A=1, B=7, C=12
\end{aligned}
$$

$$
\begin{gathered}
16-4 B+C=0 \\
16-4 \times 7+C=0 \\
16-28+C=0 \\
C=12
\end{gathered}
$$

Q4 cont
b) i)

$$
\begin{aligned}
& P A=2 P B \\
& \sqrt{(x+1)^{2}+(y-0)^{2}}=2 \sqrt{(x-2)^{2}+(y-0)^{2}} \\
& (x+1)^{2}+y^{2}=4\left((x-2)^{2}+y^{2}\right) \\
& 0=4(x-2)^{2}-(x+1)^{2}+3 y^{2} \\
& 0=4\left(x^{2}-4 x+4\right)-\left(x^{2}+2 x+1\right)+3 y^{2} \\
& 0=3 x^{2}-18 x+15+3 y^{2} \\
& 0=x^{2}-6 x+5+y^{2} \\
& 0=x^{2}-6 x+y^{2}+5
\end{aligned}
$$

ii)

$$
\begin{aligned}
& 0=x^{2}-6 x+9+y^{2}+5-9 \\
& 0=(x-3)^{2}+y^{2}-4 \\
& (x-3)^{2}+y^{2}=4
\end{aligned}
$$

centre $(3,0)$
radius 2

