Student Number:

2015 YEAR 11 HSC Assessment Point 1

Mathematics

General Instructions

- Date of task Tuesday 17th November
- Weighting 15%
- Reading time 3 minutes
- Working time 45 minutes
- Write using black or blue pen
- BOSTES approved calculators may be used
- A reference sheet is provided at the back of this paper
- Show all necessary working

Total marks - 34

Question 1-3

34 marks

• Start each question in a new booklet

Outcomes

- Tangent to a Curve and Derivative of a Function
- The Quadratic Polynomial
- Locus and the Parabola

Mathematics HSC AP1 2015

Written by TLE/SLS

3

2

Question 1 (10 Marks)

- a) Find the equation(s) of a point P(x, y) that moves so that it is always 7 units from the 2 line y = 2.
- b) Differentiate $5x^3 2x + 4$ with respect to x.
- c) Find the equation of the tangent to the curve $y = x^3 3x^2$ at the point (3, 0).
- d) Find the equation of the directrix of the parabola $x^2 = -18y$.
- e) Find the values of k for which the quadratic equation $2x^2 + 8x + k = 0$ has 2 distinct, 2 real roots.

Question 2 (14 Marks) Start this question in a new booklet

a) Differentiate the following with respect to *x*, leaving your answer in fully factored form:

(i)
$$\frac{x-2}{x+3}$$
 2

(ii)
$$x^3(2x-9)^5$$
 3

- b) Let α and β be the solutions of $x^2 + 12x + 3 = 0$. Find:
 - (i) $\alpha + \beta$ 1
 - (ii) $\alpha\beta$ 1
 - (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ 2

(iv)
$$\alpha + \frac{3}{\alpha}$$
 2

c) Find the values of a, b and c, given that $3x^2 - 14x - 2 \equiv a(x-2)^2 + b(x+4) + 1 + c$ 3

Question 3 (10 Marks)

Start this question in a new booklet

a)	Given that $f(x) = \sqrt{4x+b}$ and that $f'(11) = \frac{2}{5}$,			
	(i)	Show that $f'(x) = \frac{2}{\sqrt{4x+b}}$	2	
	(ii)	Hence, find the value of <i>b</i> .	2	

b) Consider the parabola
$$y^2 - 4y - 6x - 8 = 0$$
.

(i)	Find the coordinates of the vertex	2
(ii)	Find the coordinates of the focus	2
(iii)	Show that the line $3x + 4y - 3 = 0$ intersects the parabola exactly twice.	2

End of Examination

Que	Question 1			
Q	Solution	Suggested marking criteria		
A	y = 9 and $y = -5$	1 mark for $y = 9$		
		1 mark for $y = -5$		
В	$\frac{d}{dx}(5x^3 - 2x + 4) = 15x^2 - 2$	1 mark for correct answer		
С	$y = x^3 - 3x^2$	1 mark for $y' = 3x^2 - 6x$		
	$y' = 3x^2 - 6x$ When $x = 3$,	1 mark for $y'=9$ at $x=3$		
	y' = 9	1 mark for $y = 9x - 27$ or equivalent		
	y-0=9(x-3) $y=9x-27$	equivalent		
D	4a = 18	1 mark for the focal length, a		
	$a = \frac{18}{4}$ $= \frac{9}{2}$	1 mark for the equation of the directrix		
	Directrix equation is $y = \frac{9}{2}$			
E	Two distinct real roots $\therefore \Delta > 0$	1 mark for $64 - 8k > 0$		
	$\Delta = 8^2 - 4 \times 2 \times k$	1 mark if answer follows		
	= 64 - 8k			
	$\therefore 64 - 8k > 0$			
	-8k > -64			
	<i>k</i> < 8			

SECTION 2				
Q	Solution	Suggested marking criteria		
Ai	$\frac{d}{dx}\left(\frac{x-2}{x+3}\right) = \frac{1(x+3)-1(x-2)}{(x+3)^2}$	1 mark for correct substitution in quotient or product rule		
	$=\frac{5}{\left(x+3\right)^2}$	1 mark if answer follows		
A ii	$u = x^{3}$ $v = (2x-9)^{5}$ $u' = 3x^{2}$ $v' = 10(2x-9)^{4}$	1 mark for correct differentiation of <i>u</i> and <i>v</i>		
	$\frac{d}{dx}x^{3}(2x-9)^{5} = 3x^{2}(2x-9)^{5} + 10x^{3}(2x-9)^{4}$	1 mark for correct substitution into product rule		
	$= x^{2} (2x-9)^{4} [3(2x-9)+10x]$	1 mark for fully factored result		
	$= x^{2} (2x-9)^{4} (6x-27+10x)$			
	$= x^2 (2x-9)^4 (16x-27)$			

Вi	$\alpha + \beta = -\frac{12}{1}$	1 mark for correct answer
Bii	$= -12$ $\alpha\beta = \frac{3}{1}$	1 mark for correct answer
Biii	$=3$ $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$ $= \frac{-12}{3}$	1 mark for $\frac{\alpha + \beta}{\alpha \beta}$ 1 mark for correct answer
Biv	= -4 From ii $\beta = \frac{3}{\alpha}$ $\therefore \alpha + \frac{3}{\alpha} = \alpha + \beta$	1 mark for $\beta = \frac{3}{\alpha}$ 1 mark for correct answer
C	$= -12$ $a(x-2)^{2} + b(x+4) + 1 + c$ $= a(x^{2} - 4x + 4) + b(x+4) + 1 + c$ $= ax^{2} - 4ax + 4a + bx + 4b + 1 + c$ $= ax^{2} + (b - 4a)x + (4a + 4b + 1 + c)$ $\therefore a = 3$ $\therefore b - 4a = -14$ $b - 12 = -14$ $b = -2$ $\therefore 4a + 4b + 1 + c = -2$ $12 - 8 + 1 + c = -2$ $5 + c = -2$ $c = -7$ $\therefore a = 3, b = -2, c = -7$	 1 mark for correct expansion and factorising 1 mark for correct value of a and if b follows 1 mark if value of c follows

SEC	SECTION 3			
Q	Solution	Suggested marking criteria		
Ai	$f(x) = \left(4x + b\right)^{\frac{1}{2}}$	1 mark for correctly showing use of the chain rule		
	$f'(x) = \frac{1}{2} (4x+b)^{-\frac{1}{2}} \times 4$	1 mark for fully showing the result		
	$=2(4x+b)^{-\frac{1}{2}}$			
	$=\frac{2}{1}$			
	$(4x+b)^{\frac{1}{2}}$			
	$=\frac{2}{\sqrt{4x+b}}$			

A ii	$\frac{2}{\sqrt{4x+b}} = \frac{2}{5} \text{ when } x = 11$ $\frac{2}{\sqrt{44+b}} = \frac{2}{5}$ $\therefore \sqrt{44+b} = 5$ $44+b = 25$	1 mark for $\frac{2}{\sqrt{44+b}} = \frac{2}{5}$ 1 mark if solution follows
Bi	b = -19 y ² - 4y = 6x + 8 (y-2) ² = 6x + 12 (y-2) ² = 6(x+2) Vertex is at (-2,2)	1 mark for $y(y-4) = 6\left(x + \frac{4}{3}\right)$ 1 mark if vertex follows
Bii	4a = 6 $a = \frac{3}{2}$ Focus is at $\left(-\frac{1}{2}, 2\right)$	1 mark for focal length following from b i 1 mark if focus follows
Biii	$3x+4y-3=0$ $3x = -4y+3$ $6x = -8y+6$ Subs into parabola $y^{2}-4y-(-8y+6)-8=0$ $y^{2}-4y+8y-6-8=0$ $y^{2}+4y-14=0$ $\Delta = 4^{2}-4\times1\times-14$ $= 16+56$ $= 72$ $\Delta > 0 \therefore \text{ two points of intersection}$ between the line and parabola	1 mark for $y^2 - 4y - (-8y+6) - 8 = 0$ or equivalent 1 mark for correctly using the discriminant to show the result