NORTH SYDNEY BOYS HIGH SCHOOL

2009 YEAR 12 HSC ASSESSMENT TASK 1

Mathematics

General Instructions

- Working time - 65 minutes
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Total Marks (59)

- Attempt all questions

Class Teacher:
(Please tick or highlight)
O Mr Barrett
O Mr Fletcher
O Mr Ireland
O Mr Lowe
O Mr Rezcallah
O Mr Trenwith
O Mr Weiss

Student Number:

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total	Total
Mark	$\overline{8}$	$\overline{9}$	$\overline{10}$	$\overline{10}$	$\overline{12}$	$\overline{10}$	$\overline{59}$	$\overline{100}$

2009 - Pout poper.

Start each question on a new page.

Question 1 (8 marks) Start a new page.

(a) Differentiate with respect to x :
(i) $\left(x^{2}+3 x\right)^{4}$
(ii) $\frac{x^{2}+1}{x-2}$
(b) (i) Find the x coordinate of the point on the graph of $y=5-14 x-2 x^{2}$
where the tangent is parallel to the line $y=-2 x+7$
(ii) Hence find the equation of this tangent.

Question 2 (9 marks) Start a new page.
(a) In a certain arithmetic series, the second term is 19 and the eighth term is 37.
(i) Show that the common difference is 3
(ii) Find the value of the $51^{\text {st }}$ term.
(b) Evaluate $\sum_{k=2}^{5}(k-1)^{2}$
(c) By considering the recurring decimal 0.45 as the sum of an infinite geometric series, express 0.45° in the form $\frac{a}{b}$.

Question 3 (10 marks) Start a new page.
Consider the curve given by $y=1+3 x-x^{3}$, for $-2 \leq x \leq 3$.
(a) Find the coordinates of the stationary points and determine their nature.
(b) Find the coordinates of any points of inflexion.
(c) Sketch the curve in the domain $-2 \leq x \leq 3$.
(d) What is the minimum value of the function in the domain $-2 \leq x \leq 3$?

Question 4 (10 marks) Start a new page.
(a) The current i in a certain resistor as a function of the power P developed in the resistor is given by $i=2.6 \sqrt{P}$.
Find the rate of change of i with respect to P when $P=4$.
(b) A particle moves in a straight line and after t seconds its velocity v metres per second given by $v=12 t-3 t^{2}$.
(i) When is the particle at rest? 2
(ii) What is the acceleration at $t=2$?
(c) Find all values of x for which the function $f(x)=8 x^{2}-24 x+5$ is increasing.
(d) A curve $y=f(x)$ has the following properties:

$$
f(x)>0 ; f^{\prime}(x)>0 ; \quad f^{\prime \prime}(x)<0
$$

Sketch a curve satisfying these conditions.

Question 5 (12 marks) Start a new page.
(a) The first term of a geometric series is 7 and the $6^{\text {th }}$ term is 1701.
(i) Find the common ratio. 2
(ii) Calculate the sum of the first ten terms.
(b) The sum S_{n} of the first n terms of a certain series is $2 n+3 n^{2}$, for $n \geq 1$. Find an expression for the nth term T_{n} of this series.
(c) Mick received 30 tonnes of topsoil for his front yard. He uses a wheel barrow which can hold 150 kg to spread the soil.
(i) How many loads in the wheel barrow will he use?

He begins at the pile of topsoil and deposits the first load 3 metres from the pile. Each successive load is dumped half a metre further from the pile, in a straight line.
(ii) How far from the pile will he leave the final barrow load?
(iii) What is the total distance that Mick will travel with the wheel barrow if he finishes back at his starting point?

Start each question on a new page.

Question 6 (10 marks) Start a new page.
(a) The Green group at NSBHS wishes to build a new water tank. It is to be in the shape of a closed cylinder of radius r metres and height h metres, as shown in the diagram:

(i) The surface area of metal to be used in the tank is $30 \mathrm{~m}^{2}$.

Use that fact to show that $h=\frac{15}{\pi r}-r$
(ii) Show that the volume, $V \mathrm{~m}^{3}$ of the tank is given by $V=15 r-\pi r^{3}$
(iii) Find the radius if the volume of the tank is to be maximised.
(b) The following diagram shows the graph of the gradient function of $f(x)$.

For what value of x does $f(x)$ have a local minimum?
Justify your answer.

(c) By referring to the derivative of the function $f(x)=\sqrt{x-1}$, explain why the curve $\mathrm{y}=\sqrt{x-1}$ has no turning points.

2009 HSC - Assessment Task 1 Suggested solutions

Q1. (a) (i)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+3 x\right)^{4} & =(2 x+3) \cdot 4 \cdot\left(x^{2}+3 x\right)^{3} \\
& =(8 x+12)\left(x^{2}+3 x\right)^{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}+1}{x-2}\right) & =\frac{(x-2) \cdot(2 x)-\left(x^{2}+1\right)(1)}{(x-2)^{2}} \\
& =\frac{x^{2}-4 x-1}{(x-2)^{2}}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& y=5-14 x-2 x^{2} \\
& \therefore y^{\prime}=-14 x-4 x
\end{aligned}
$$

Gradient of $y=-2 x+7$ is -2

$$
\begin{aligned}
\therefore-14-4 x & =-2 \\
\therefore x & =-3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { at } x=-3, y & =5-14(-3)-2(-3)^{2} \\
\therefore y & =29 \\
\therefore \quad y-29 & =-2(x+3) \\
\therefore y & =-2 x+23
\end{aligned}
$$

(i.e. $2 x+y-23=0$)
\checkmark
\checkmark
\checkmark
(a) (i) $T_{2}=a+d=19$

$$
T_{8}=a+7 d=37
$$

$$
6 d=18
$$

$$
d=3
$$

(ii) $\quad T_{51}=a+50 d$

$$
\text { From(i), } \begin{aligned}
& a=19-d=16 \\
\therefore T_{51} & =16+50(3) \\
\therefore T_{51} & =166
\end{aligned}
$$

(b) $\begin{aligned} \sum_{k=2}^{5}(k-1)^{2} & =1^{2}+2^{2}+3^{2}+4^{2} \\ & =1+4+9+16\end{aligned}$

$$
=30
$$

(c) $0.4 \dot{5}=0.4+\underbrace{0.05+0.005+0.0005+\cdots}$.

$$
\begin{aligned}
& \text { G.P. with } \left.\begin{array}{l}
a=0.05 \\
r=0.1
\end{array}\right\}\left\{\begin{array}{l}
\sqrt{\text { correct } G . P .} \begin{array}{r}
\text { porametes }
\end{array} \\
\therefore S_{\infty}=\frac{0.05}{1-0.1}
\end{array}\right\} \sqrt{\text { correct sub. }} \begin{array}{l}
\text { into } S_{\infty}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 0.45^{\circ} & =\frac{4}{10}+\frac{5}{90} \\
& =\frac{36+5}{90} \\
& =\frac{41}{90}
\end{aligned}
$$

Q3. $y=1+3 x-x^{3},-2 \leq x \leq 3$
(a) For stationary points, $y^{\prime}=0$

$$
\begin{aligned}
& \therefore y^{\prime}=3-3 x^{2}=0 \\
& \therefore \quad 3(1-x)(1+x)=0 \\
& \therefore \quad x=1 \quad \text { or } \quad x=-1 \\
& y=3 \quad y=-1
\end{aligned}
$$

So stationary points are $(1,3)$ and $(-1,-1)$

$$
y^{\prime \prime}=-6 x
$$

$\left\{\begin{array}{l}\text { At }(1,3), y^{\prime}=-6<0 \quad \therefore(1,3) \text { is max. turning point } \\ \text { At }(-1,-1), y^{\prime}=+6>0 \quad \therefore(-1,-1) \text { is min. turning point }\end{array}\right.$
[Alternatively, may use y^{\prime} to test the points]
(b) For inflection, $y^{\prime \prime}=0 \quad \therefore-6 x=0$

$$
\therefore \quad x=0, y=1
$$

Test: | x | -0.1 | 0 | +0.1 |
| :---: | :---: | :---: | :---: |
| $y^{\prime \prime}$ | +0 | - | |

Concavity changes, $\therefore(0,1)$ is an inflexion $p t$.

(d) Minimum value in domain $-2 \leq x \leq 3$ is -17

QU.
(a)

$$
\begin{aligned}
& i=2.6 \sqrt{P} \quad \therefore \quad \frac{d i}{d P}=\frac{1}{2}(2.6) P^{-\frac{1}{2}} \\
&=\frac{1.3}{\sqrt{P}} \\
& \therefore \text { at } P=4, \quad \frac{d i}{d P}=\frac{1.3}{\sqrt{4}}=0.65
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
\therefore \quad 12 t-3 t^{2} & =0 \\
3 t(4-t) & =0 \\
& \therefore \text { at rest } a \\
a=\frac{d v}{d t}=12-6 t & \\
\therefore a t t=2, \quad a & =12-6(2) \\
\therefore a & =0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { at rest at } \begin{array}{l}
t=0 \\
t=4
\end{array}
\end{aligned}
$$

$$
t=4 \text { seconds }
$$

(ii)

So acceleration $=0$ at $t=2$
(c)

$$
\begin{aligned}
& f(x)=8 x^{2}-24 x+5 \\
& f^{\prime}(x)=16 x-24 \\
& f(x) \text { increasing } \Rightarrow \quad f^{\prime}(x)>0 \\
& \therefore 16 x-24>0 \\
& x>\frac{24}{16}
\end{aligned}
$$

(ie $\quad x>\frac{3}{2}$)

$$
\text { (d) }\left\{\begin{array}{l}
f(x)>0 \Rightarrow \text { above } x \text { axis } \\
f^{\prime}(x)>0 \Rightarrow \text { increasing } \\
f^{\prime \prime}(x)<0 \Rightarrow \text { concave down } \uparrow^{y}
\end{array}\right.
$$

\checkmark correct derivative
\checkmark correct answer
$\sqrt{ }$ setting $v=0$
\checkmark for both times

$\sqrt{$| correct |
| :---: |
| acceleration |
| equation |$}$| $\sqrt{\text { correct }}$acceleration
 value |
| :--- | value

\checkmark	sets $f^{\prime}>0$
\checkmark	correct
answer	

Q5.
(a) (i)

$$
\begin{aligned}
T_{1} & =a=7 \\
T_{6} & =a r^{5}=1701 \\
\therefore \quad \frac{a r^{5}}{a} & =\frac{1701}{7} \\
r^{5} & =243 \\
r & =3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{10} & =\frac{7\left(3^{(10)} 1\right)}{3-1} \quad \text { formula mernarks inorg } \\
& =206668
\end{aligned}
$$

(b)

$$
\begin{aligned}
S_{n} & =2 n+3 n^{2} \\
T_{n} & =S_{n}-S_{n-1} \\
& =\left(2 n+3 n^{2}\right)-\left(2(n-1)+3(n-1)^{2}\right) \\
& =2 n+3 n^{2}-\left(2 n-2+3 n^{2}-6 n+3\right) \\
\therefore T_{n} & =6 n-1
\end{aligned}
$$

[alternatively, candidates may calculate successive sums $S_{1}, S_{2}, S_{3} \ldots$ and discern the patten that way.]

- If they used this method, the needed to shaw it was an AP algedrnicly, ie. net By shaving first few terms have a common difference
(2 marks for success.)
correct working.
$\sqrt{ }$ correct $\begin{gathered}\text { answer }\end{gathered}$
$\sqrt{ } \quad \begin{aligned} & \text { sub.in } \\ & \text { correctly }\end{aligned}$
correct answer
subinn-1 carrecthy

$$
\checkmark S_{n}-S_{n+1} \stackrel{f}{=}
$$ they made an attempt to ow h \checkmark final answer

Q5 (c)
(i)

$$
\begin{aligned}
\text { number of loads } & =\frac{30000}{150} \\
\therefore & =200 \text { loads }
\end{aligned}
$$

(ii)

The distances from the pile form an A.P. with $a=3$,

$$
d=0.5
$$

$$
\begin{aligned}
\therefore \quad 200^{\text {th }} \text { load }=T_{200} & =a+(n-1) d \\
- \text { Wrong formula -n omarks } & =3+199(0.5) \\
-S_{n}-\text { no marks } & =102.5 \mathrm{~m}
\end{aligned}
$$

(iii)

Total distance walked

$$
\begin{aligned}
& =2(3+3.5+4+\cdots+102.5) \\
& =2\left[\frac{200}{2}(3+102.5)\right] \\
& =21.1 \mathrm{~km} \\
& \quad-\text { curong formuta-no marks } \\
& \quad-T_{n} \quad-n o \text { marks. }
\end{aligned}
$$

Qb.
(a)

(i)

Surface area $=2 \pi r^{2}+2 \pi r \cdot h$

$$
\left.\begin{array}{rl}
\therefore \quad 2 \pi r^{2}+2 \pi r h & =30 \\
2 \pi r(r+h) & =30 \\
r+h & \equiv \frac{30}{2 \pi r}=\frac{15}{\pi r} \\
\therefore h & =\frac{15}{\pi r}-r
\end{array}\right\}
$$

$\sqrt{ }$ correctly simplified
for this calculation

$$
\begin{aligned}
V & =\pi r^{2} \cdot h \\
\therefore V & =\pi r^{2}\left(\frac{15}{\pi r}-r\right) \\
\therefore V & =15 r-\pi r^{3}
\end{aligned}
$$

(iii)
for max. volume, $\frac{d V}{d r}=0$

$$
\begin{aligned}
\therefore \quad 15-3 \pi r^{2} & =0 \\
r^{2} & =\frac{5}{\pi} \\
\therefore r & = \pm \sqrt{\frac{5}{\pi}} \\
\text { but } r>0 \quad \therefore r & =\sqrt{\frac{5}{\pi}} \\
(& \doteqdot 1.262 \text { to } 3 \text { dep. })
\end{aligned}
$$

[altematively, test first derivative]
$\sqrt{\text { correctly sets }}$ derivative $=0$
$\} \sqrt{ } \begin{gathered}\text { correct } \\ \text { radius }\end{gathered}$
for testing correctly

Qb.
(b)

Min. or max. recur when $f^{\prime}(x)=0$, ie at $x=1$ or $x=5$.

For a minimum, $f^{\prime}(x)$ must change from - to t.

$$
\therefore \text { local minimum is at } x=5
$$

(c)

$$
\begin{aligned}
f(x) & =\sqrt{x-1} \\
\therefore f^{\prime}(x) & =\frac{1}{2}(x-1)^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x-1}}
\end{aligned}
$$

But $\frac{1}{2 \sqrt{x-1}}$ can never equal 0
\therefore there are no turning points.

