

NORTH SYDNEY BOYS HIGH SCHOOL

2009 YEAR 12 HSC ASSESSMENT TASK 1

Mathematics

General Instructions

- Working time 65 minutes
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.

Total Marks (59)

• Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Barrett
- O Mr Fletcher
- O Mr Ireland
- O Mr Lowe
- O Mr Rezcallah
- O Mr Trenwith
- O Mr Weiss

Student Number:

Question	1	2	3	4	5	6	Total	Total
Mark	8	9	10	10	12	10	59	100

Start each question on a new page.

34

Question 1 (8 marks) Start a new page.		Marks
(a)	Differentiate with respect to x:	
	(i) $(x^2 + 3x)^4$	2
	(ii) $\frac{x^2+1}{x-2}$	2
(b)	(i) Find the x coordinate of the point on the graph of $y = 5 - 14x - 2x^2$ where the tangent is parallel to the line $y = -2x + 7$	2
	(ii) Hence find the equation of this tangent.	2
Ques	tion 2 (9 marks) Start a new page	
(a)	In a certain arithmetic series, the second term is 19 and the eighth term is 37	
(4)	(i) Show that the common difference is 3	2
	(ii) Find the value of the 51 st term.	2
	•	
(b)	Evaluate $\sum_{k=2}^{5} (k-1)^2$	2
(c)	By considering the recurring decimal $0 \cdot 45$ as the sum of an infinite geometric series, express $0 \cdot 45$ in the form $\frac{a}{b}$.	3
Ques Consi	stion 3 (10 marks) Start a new page. der the curve given by $y = 1 + 3x - x^3$, for $-2 \le x \le 3$.	
	(a) Find the coordinates of the stationary points and determine their nature.	4
	(b) Find the coordinates of any points of inflexion.	2
	(c) Sketch the curve in the domain $-2 \le x \le 3$.	3
	(d) What is the minimum value of the function in the domain $-2 \le x \le 3$?	1

Question 4 (10 marks) Start a new page.

(a)	The current <i>i</i> in a certain resistor as a function of the power <i>P</i> developed in the resistor is given by $i = 2.6 \sqrt{P}$. Find the rate of change of <i>i</i> with respect to <i>P</i> when $P = 4$.	2
(b)	A particle moves in a straight line and after t seconds its velocity v metres per second given by $v = 12t - 3t^2$.	
	(i) When is the particle at rest?	2
	(ii) What is the acceleration at $t = 2$?	2
(c)	Find all values of x for which the function $f(x) = 8x^2 - 24x + 5$ is increasing.	2
(d)	A curve $y = f(x)$ has the following properties:	
	f(x) > 0; f'(x) > 0; f''(x) < 0.	
	Sketch a curve satisfying these conditions.	2
Ques	stion 5 (12 marks) Start a new page.	
(a)	The first term of a geometric series is 7 and the 6^{th} term is 1 701.	
	(i) Find the common ratio.	2
	(ii) Calculate the sum of the first ten terms.	2
(b)	The sum S_n of the first <i>n</i> terms of a certain series is $2n + 3n^2$, for $n \ge 1$. Find an expression for the <i>n</i> th term T_n of this series.	3
(c)	Mick received 30 tonnes of topsoil for his front yard. He uses a wheel barrow which can hold 150kg to spread the soil.	
	(i) How many loads in the wheel barrow will he use?	1
	He begins at the pile of topsoil and deposits the first load 3 metres from the pile. Each successive load is dumped half a metre further from the pile, in a straight line.	
	(ii) How far from the pile will he leave the final barrow load?	2
	(iii) What is the total distance that Mick will travel with the wheel barrow if he finishes back at his starting point?	2

• •

Question 6 (10 marks) Start a new page.

(a) The Green group at NSBHS wishes to build a new water tank. It is to be in the shape of a closed cylinder of radius r metres and height h metres, as shown in the diagram:

- (i) The surface area of metal to be used in the tank is $30m^2$.
 - Use that fact to show that $h = \frac{15}{\pi r} r$ 2

(ii) Show that the volume, $V m^3$ of the tank is given by $V = 15r - \pi r^3$	1
(iii) Find the radius if the volume of the tank is to be maximised.	3

(b) The following diagram shows the graph of the gradient function of f(x). For what value of x does f(x) have a local minimum? Justify your answer.

(c) By referring to the derivative of the function $f(x) = \sqrt{x-1}$, explain why the curve $y = \sqrt{x-1}$ has no turning points.

2

2

$$2009 \text{ HSC} - \text{Assessment Task 1} \qquad \text{Suggested solutions} \\ \hline Q[1. (a) (i) \quad \frac{d}{dx} (x^{2}+3x)^{4} = (2x+3) \cdot 4 \cdot (x^{2}+3x)^{3} \\ = (8x+12)(x^{2}+3x)^{3} \\ (ii) \quad \frac{d}{dx} (\frac{x^{2}+1}{x-2}) = (\frac{(x-2) \cdot (2x) - (x^{2}+1)(1)}{(x-2)^{2}} \\ = \frac{x^{2} - 4x - 1}{(x-2)^{2}} \\ (b) (i) \quad y = 5 - 14x - 2x^{2} \\ \therefore \quad y' = -14x - 4x \\ \text{Gradient } g \quad y^{2} - 2x + 7 \quad \text{is} - 2 \\ \therefore \quad y' = -3 \\ (ii) \quad \text{at } x = -3 \\ (iii) \quad \text{at } x = -3, \quad y = 5 - 14(-3) - 2(-3)^{2} \\ \therefore \quad y = 29 \\ \therefore \quad y - 29 = -2(x+3) \\ \therefore \quad y = -2x + 23 \\ (iie \quad 2x+y - 23 = 0) \\ \hline \end{bmatrix}$$

Mathematics (HSC Course) Assessment Task 1 91

Q3.
$$y = 1 + 3x - x^3$$
, $-2 \le x \le 3$
(a) For stationay points, $y' = 0$
 $\therefore y' = 3 - 3x^2 = 0$
 $\therefore 3(i-x)(1+x) = 0$
 $\therefore x = 1$ or $x = -1$
 $y = 3$ $y = -1$
So stationary points are $(1,3)$ and $(-1,-1)$
 $y'' = -6x$
 $\begin{cases} At (3), y' = -6 < 0$ $\therefore (1,3)$ is max. tuning point
 $\begin{cases} At (3), y' = -6 < 0$ $\therefore (-1,-1)$ is min. tuning point
 $\begin{cases} At (-1,-1), y' = +6 > 0$ $\therefore (-1,-1)$ is min. tuning point
 $\begin{cases} At (-1,-1), y' = +6 > 0$ $\therefore (-1,-1)$ is min. tuning point
 \end{cases} for correct
conductes:
 (a) For inflexion, $y'' = 0$ $\therefore -6x = 0$
 $\therefore x = 0$, $y = 1$
So inflexion could be (0,1)
 $Test: \frac{x}{y''} + 0$ $-$
 $concavity changes, $\therefore (0,1)$ is an
 $(-1,-1)$
 $\begin{cases} At x = -2, y = 1-6+8 = 3$
 $At x = -3, y = 1+9-27 = -17$
 \end{cases} for testing
 $(-1,-1)$
 $\begin{cases} At x = -2, y = 1-6+8 = -3$
 $At x = -2, y = 1-6+8 = -3$
 \end{cases} \checkmark dend points
 \checkmark for 2 sign.
 \land for 2 sign.
 $\land$$

Mathematics (HSC Course) Assessment Task 1 92

Q5.
(a) (i)
$$T_{i} = a = 7$$

 $T_{6} = ar^{5} = 1701$
 $\therefore \frac{ar^{5}}{a} = \frac{1701}{7}$
 $r^{5} = 243$
 $r = 3$
(ii) $S_{i0} = \frac{7}{(\frac{5^{2}(1)}{3-1})}$ formula - no marks
 $i = 206 668$
(b) $S_{n} = 2n + 3n^{2}$
 $T_{n} = S_{n} - S_{n-1}$
 $= (2n + 3n^{2}) - (2(n-1) + 3(n-1)^{2})$
 $= 2n + 3n^{2} - (2n-2 + 3n^{2} - 6n + 3)$
 $\therefore T_{n} = 6n - 1$
Satematively, candidate may
calculate successive sums S, $S_{2}, S_{3} \cdots$
and discern the pattern that way.]
 $- 16$ they used the method, the meeded
to show it case on AP algabriely
 k . Not by the way field for success)
 $three a common difference.
(2 marks for success)$

nt Task 1 94

$$(i) number of loads = \frac{30000}{150}$$

$$\therefore = 200 \ loads$$

$$(ii)$$

$$(ii)$$

$$(iii)$$

$$(iiii)$$

$$(iii)$$

$$(iii)$$

$$(iii)$$

$$(iii)$$

$$(iiii)$$

$$(iii)$$

$$(iii)$$

$$(iii$$

Mathematics (HSC Course) Assessment Task 1 9