

NORTH SYDNEY BOYS HIGH SCHOOL

2010 YEAR 12 HSC
 ASSESSMENT TASK 1

Mathematics

General Instructions

- Working time - 50 minutes
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Total Marks (50)

- Attempt all questions

Class Teacher:
(Please tick or highlight)
O Mr Berry
O Mr Fletcher
O Mr Rezcallah
O Mr Lowe
O Mr Ireland
O Mr Barrett
O Mr Trenwith
O MrWeiss

Student Number:

Question	1	2	3	4	.5	Total	Total
Mark	$\overline{9}$	$\overline{13}$	$\overline{8}$	$\overline{11}$	$\overline{9}$	$\overline{50}$	$\overline{100}$

Question 1 (9 marks) Start a new page
(a) Differentiate with respect to x :
(i) $\frac{x^{2}+2 x}{x}$
(i) $\left(4-x^{2}\right)^{3}$
(iii) $\frac{3 x+1}{2 x-1}$
(b) Find the equation of the tangent to the curve $y=x^{3}-2 x+2$ at the point $(2,6)$

Question 2 (13 marks) Start a new page
(a) Evaluate $\sum_{n=1}^{5} n^{2}$
(b) The third term of an arithmetic progression is 21 and the $9^{\text {th }}$ term is 57.
(i) Find the value of the first term and the common difference.

2
(ii) Find the sum of the first 80 terms.
(c) Find the $10^{\text {th }}$ term of the geometric series $-5,10,-20, \ldots$.
(d) Frank keeps a big stack of paint cans in his hardware store. The stack has 3 cans on the top row and each succeeding row has 2 more cans than the previous row. (A diagram may be helpful here.)
(i) Find the number of cans in the $12^{\text {th }}$ row.
(ii) If there are 224 cans in the stack, how many rows are there?

Question 3 (8 marks) Start a new page
(a) Consider the graph of $y=x^{3}+3 x^{2}-9 x-11$
(i) Show that this function has stationary points at $(1,-16)$ and $(-3,16)$ and determine their nature.
(ii) Find any points of inflexion. 2
(iii) Sketch the curve, showing all important features (not x-intercepts) 2
(iv) For what values of x is the curve increasing? 1

Question 4 (11 marks) Start a new page
(a) A particle is moving in a straight line so that its distance, x metres, from a fixed point, O, after t seconds is given by $x=\frac{1}{3} t^{3}-\frac{7}{2} t^{2}+6 t$.
(i) Find the equation for its velocity. 1
(ii) Find its initial position and velocity. 2
(ii) When is the particle at rest? 2
(b) A cone shaped storage tank is constructed. It has a slant height of 20 metres. The top has radius r metres and the whole tank is h metres high, as shown in the diagram:

(i) Express r in terms of h.
(i) Show that the volume, $V \mathrm{~m}^{3}$ of the tank can be expressed by

$$
\begin{equation*}
V=\frac{\pi}{3}\left(400 h-h^{3}\right) \tag{2}
\end{equation*}
$$

(ii) Hence find the value of h which will give the cone its maximum

Question 5 (9 marks) Start a new page
(a) "The inflation level I is still increasing, but at a reduced rate of increase."
(i) Sketch a graph to illustrate the above statement.
(ii) What does the above statement mean with reference to

$$
\begin{equation*}
\frac{d I}{d t} \text { and } \frac{d^{2} I}{d t^{2}} ? \tag{2}
\end{equation*}
$$

(b) A container holds 50 litres of water. A pump extracts 10 litres on the first cycle and $7 \cdot 5$ litres on the second. In each future pumping cycle the pump extracts $\frac{3}{4}$ of the amount that the previous cycle extracted.

Show that the container will never be emptied, and find how much water will finally remain in the container.
(c) If the sum of the first n terms of a sequence is given by $S_{n}=n(2 n-1)$, find a formula for the $n^{\text {th }}$ term of the sequence, T_{n}.

Q1 (a)
(i)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}+2 x}{x}\right) & =\frac{d}{d x}(x+2) \\
& =1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\left(4-x^{2}\right)^{3}\right) & =3 \cdot\left(4-x^{2}\right)^{2} \cdot-2 x \\
& =-6 x\left(4-x^{2}\right)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{3 x+1}{2 x-1}\right) & =\frac{(2 x-1)(3)-(3 x+1)(2)}{(2 x-1)^{2}} \\
& =\frac{6 x-3-6 x-2}{(2 x-1)^{2}} \\
& =\frac{-5}{(2 x-1)^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =x^{3}-2 x+2 \\
y^{\prime} & =3 x^{2}-2 \\
\therefore \text { at }(2,6), \quad y^{\prime} & =3 \cdot 2^{2}-2 \\
& =10 \\
\therefore y-6 & =10(x-2) \\
y & =10 x-14 .
\end{aligned}
$$

Q2 (a)

$$
\begin{aligned}
\sum_{n=1}^{5} n^{2} & =1^{2}+2^{2}+3^{2}+4^{2}+5^{2} \\
& =55
\end{aligned}
$$

(b) (i)

$$
\text { i) } \begin{aligned}
T_{3} & =a+2 d=21 \\
T_{9} & =a+8 d=57 \\
\therefore \quad 6 d & =36 \\
d & =6 \\
a & =9
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{80} & =\frac{80}{2}(2 \times 9+79 \times 6) \\
& =19680
\end{aligned}
$$

(c)

$$
\begin{aligned}
r & =\frac{10}{-5}=-2 \\
\therefore T_{10} & =-5 \cdot(-2)^{9} \\
& =2560
\end{aligned}
$$

(d)

$$
\begin{aligned}
a=3, & \quad d=2 \\
T_{12} & =3+11 \times 2 \\
& =25
\end{aligned}
$$

$$
\text { (ii) } \begin{align*}
224 & =\frac{n}{2}(6+2(n-1)) \\
& =n(3+n-1) \\
& =n(n+2 \\
\therefore n^{2}+2 n-224 & =0 \\
(n+16)(n-14) & =0 \quad \therefore n=14
\end{align*}
$$

ie. 14 rows

Q3 (a) $y=x^{3}+3 x^{2}-9 x-11$
(i)

$$
\begin{aligned}
y^{\prime} & =3 x^{2}+6 x-9 \\
& =3(x+3)(x-1) \\
y^{\prime \prime} & =6 x+6 \\
& =6(x+1)
\end{aligned}
$$

For stat. point, $y^{\prime}=0 \therefore \begin{aligned} & x=-3 \\ & y=16\end{aligned}$ or $\begin{aligned} x & =1 \\ y & =-16\end{aligned}$

$$
\left.\begin{array}{ll}
x=-3 & \text { or } \quad \\
y=16 & \\
y=16
\end{array}\right\}
$$

$\left.\begin{array}{l}\text { At }(-3,16), y^{\prime \prime}=-12<0 \quad \therefore \text { max. turn. pt. at }(-3,16) \\ \text { At }(1,-16), y^{\prime \prime}=6(2)>0 \quad \therefore \text { min. turn. pt. at }(1,-16)\end{array}\right\}$
(ii) For inflexions, $y^{\prime \prime}=0 \quad \therefore \quad \begin{aligned} & x=-1 \\ & y=0\end{aligned}$

Test:-

(iv) From the graph, y is increasing for $x<-3$ or $x>1$

2 unit
Q4 (a) $x=\frac{1}{3} t^{3}-\frac{7}{2} t^{2}+6 t$
(i) $v=\frac{d x}{d t}=t^{2}-7 t+6$
(ii) at $t=0, x=0 \quad \therefore$ at origin

$$
v=6 \quad \therefore 6 \mathrm{~m} / \mathrm{s} \text { to night. }
$$

(iii) "at rest" $\Rightarrow v=0$

$$
\begin{aligned}
& \therefore \quad(t-1)(t-6)=0 \\
& \therefore \quad t=1,6
\end{aligned}
$$

So \therefore at rest at 1 second \& at 6 seconds.
(b)
(1)

$$
\begin{aligned}
& r^{2}=20^{2}-h^{2} \\
& \therefore=\sqrt{400-h^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\frac{1}{3} \cdot \pi \cdot r^{2} \cdot h \\
& =\frac{1}{3} \pi\left(400-h^{2}\right) h \\
V & =\frac{\pi}{3}\left(400 h-h^{3}\right)
\end{aligned}
$$

(iii) For max., $\frac{d r}{d h}=0$

$$
\begin{aligned}
\therefore \frac{\pi}{3}\left(400-3 h^{2}\right) & =0 \\
3 h^{2} & =400 \\
h & =\frac{20}{\sqrt{3}} \quad(\text { as } h>0)
\end{aligned}
$$

Test: $\quad \frac{d^{2} V}{d h^{2}}=\frac{\pi}{3}(-6 h)<0$
$\therefore \max$. at $h=\frac{20}{\sqrt{3}} \mathrm{~m}$.

25
(a)
(i)

(ii) $\frac{d I}{d t}>0$ means inflation is increasing. $\frac{d^{2} I}{d t^{2}}<0$ means the rater of increase is slowing down.
(b) The amounts extracted form an infinite G.P. with $a=10, r=\frac{3}{4}$,

Since water extracted $=10+7,5+\cdots \cdots$

$$
\begin{aligned}
\therefore \quad S_{\infty} & =\frac{10}{1-\frac{3}{4}} \\
& =40 \text { litres }
\end{aligned}
$$

$\therefore 10$ litres will remain.
(c)

$$
\left.\begin{array}{rl}
T_{n} & =S_{n}-S_{n-1} \\
& =n(2 n-1)-(n-1)(2(n-1)-1) \\
& =2 n^{2}-n-(n-1)(2 n-3) \\
& =2 n^{2}-n-\left(2 n^{2}-5 n+3\right) \\
& =4 n-3 \\
\therefore T_{n} & =4 n-3
\end{array}\right\}
$$

