Question 1[Maximum mark: 14][Start on a new green sheet]

(a) Differentiate with respect to *x*:

(i)
$$5 - \frac{3}{x^2}$$
 1

(ii)
$$\sqrt{3x^2 - 2x}$$
 2

(iii)
$$\frac{3x+1}{x^2-1}$$
 3

(b) Consider
$$f(x) = \frac{1}{(3x-1)^2}$$

(i) Show that
$$f'(x) = \frac{-6}{(3x-1)^3}$$
 3

(ii) Find the gradient of the tangent to the graph of
$$f(x)$$

when
$$x=1$$
 1

(iii) Find the equation of the tangent to the curve
$$f(x)$$
 at the point

$$\left(1, \frac{1}{4}\right)$$
. Write your answer in the form $ax + by + c = 0$.

(c) The curve
$$y = ax^2 - 2ax + 3$$
 has a gradient of 8 when $x = -3$.

Question 2		[Maximum mark: 14]	[Start on a new green sheet]	
(a)	Find all real values of x for which $4^x - 5(2^x) + 4 = 0$			
(b)	Consider the parabola $8y = x^2 - 2x - 7$			
	(i)	Find the coordinates of the vertex. [Hint : Write in the form $(x-h)^2 = 4ax$	(y-k)] 2	
	(ii)	Find the coordinates of the focus.	2	
	(iii)	Write down the equation of the direc	trix. 1	
	(iv)	Sketch the parabola showing all the ir	nportant features 2	
1-1	C :	that and O are the sector of the sector	2^2 5^2	

Given that α and β are the roots of the quadratic equation $3x^2 - x + 5 = 0$, (c) find the value of:

(i)	lphaeta	1
(ii)	$\alpha + \beta$	1
(iii)	$\alpha^2 + \beta^2$	2

Question 3 [Maximum mark : 12] [Start on a new green sheet]

(a)	(i)	For what values of k is the expression $x^2 - 3kx + 9 = 0$ positive definite	2
-----	-----	--	---

(ii) Find the values of *m* for which $12 + 4m - m^2 > 0$. **2**

(b) The focus of a parabola is S(3, 4) and its directrix is the line x = -3.

(i)	Sketch the parabola and indicate the coordinates of the vertex, V.	2
(ii)	Write down the focal length of the parabola.	1
(iii)	Find the equation of the parabola.	2

(c) Find the equation of the locus of a point P(x, y) that moves so the line PA is perpendicular to the line PB where A = (-4, 0) and B = (1, 1)

[Hint: Draw a diagram]

3

End of Assessment