St Ignatius' College Riverview

Mathematics
 Assessment Task I

Year 12
(Time allowed - 60 minutes)
INSTRUCTIONS: * Answer each question on a separate answer sheet.

* Write your name and your teacher's name on each answer sheet.
* Answer ALL questions.
* Approved calculators may be used.

QUESTION 1: SEQUENCES \& SERIES
 (20 marks)

a) The formula for the \boldsymbol{n} th term of an arithmetic sequence is: $T_{n}=2 n+4$
i) What are the $4^{\text {th }}$ and $5^{\text {th }}$ terms?
ii) What is the common difference?
b) Find the values of x such that $\{3, x+4, x+10 \ldots \ldots . .$.$\} forms a geometric sequence. (2 marks)$
c) The $3^{\text {rd }}$ term of an arithmetic progression is 16 , and the $12^{\text {th }}$ term is 79 .
i) Find the first term and common difference.
ii) Find the sum of the first 25 terms.
d) A super-ball drops from a height of 9 metres and bounces continually, each successive height being $\frac{2}{3}$ of the previous height.
i) Show that the first distance travelled down and up is 15 metres.
ii) When the ball finally comes to rest, through what distance will it have travelled in total?
e) How many terms of the series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots$. give a sum of $\frac{1023}{1024}$?
f) The price of windows in a house is $\$ 500$ for the first window, then $\$ 300$ for each additional window.
i) Find a formula for the cost of n windows.
ii) How much will fifteen windows cost?
iii) What is the maximum number of windows whose total cost is less than $\$ 10,000$?

(BEGIN A NEW PAGE)

QUESTION 2: THE QUADRATIC FUNCTION

(20 marks)

a) By observing the roots in fig. 1, write the equation of the parabola.

b) Show that equation $2 x^{2}+x+4=0$ has no real roots.
c) Find all values of k for which the expression $k x^{2}+3 k x+6$ is positive definite.
d) If α and β are the roots of the quadratic equation $x^{2}-3 x-6=0$, find the value of:
i) $\alpha+\beta$
ii) $\alpha \beta$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
iv) $\alpha^{2}+\beta^{2}$
e) Solve: $x^{2}+\frac{4}{x^{2}}=5$
f) Find values of a, b and c if $x^{2}-x \equiv a(x+3)^{2}+b x+c-1$

Solutions

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
whose total cost is less than \(\$ 10,000\) ?
\[
\begin{aligned}
10000 \& =200+300 n \\
9800 \& =300 n \\
n \& =32 . \&
\end{aligned}
\] \\
\(\therefore 32\) windows
\end{tabular} \& 1
1 \& \\
\hline 2a) By observing the roots in fig. 1, write the equation of the parabola.
\[
\begin{aligned}
\alpha=-1 \text { and } \beta \& =4 \\
(x-\alpha)(x-\beta) \& =0 \\
\therefore(x+1)(x-4) \& =0 \\
\therefore x^{2}-4 x+x-4 \& =0 \\
\therefore x^{2}-3 x-4 \& =0
\end{aligned}
\]
 \& 1

1 \&

\hline | b) Show that equation $2 x^{2}+x+4=0$ has no real roots. |
| :--- |
| No real roots $\therefore \Delta<0$ $\begin{aligned} b^{2}-4 a c & <0 \\ (1)^{2}-4(2)(4) & <0 \\ 1-32 & <0 \\ -31 & <0 \\ \therefore \Delta & <0 \end{aligned}$ $\therefore \text { No real roots }$ | \& 1

2 \&

\hline | c) Find all values of k for which the expression $k x^{2}+3 k x+6$ is positive definite. |
| :--- |
| Positive Definite $\therefore a>0$ and $\Delta<0$ $\begin{gathered} b^{2}-4 a c<0 \\ (3 k)^{2}-4(k)(6)<0 \\ 9 k^{2}-24 k<0 \\ 3 k(3 k-8)<0 \\ \therefore 0<k<\frac{8}{3} \end{gathered}$ | \& 1

1
1 \&

\hline | d) If α and β are the roots of the quadratic equation $x^{2}-3 x-6=0$, find the value of: |
| :--- |
| i) $\alpha+\beta$ $\begin{aligned} & \alpha+\beta=\frac{-b}{a} \\ & \alpha+\beta=\frac{-(-3)}{1} \\ & \alpha+\beta=3 \end{aligned}$ |
| ii) $\alpha \beta$ | \& 1 \&

\hline
\end{tabular}

$\alpha \beta=\frac{c}{a}$
$\alpha \beta=\frac{-6}{1}$
$\alpha \beta=-6$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta}{\alpha \beta}+\frac{\alpha}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{3}{-6} \\
& =-\frac{1}{2}
\end{aligned}
$$

iv) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=(3)^{2}-2(-6)$
$=9+12$
$=21$
1

1

1
$x^{4}-5 x^{2}+4=0$
Let $m=x^{2}$
$\therefore m^{2}-5 m+4=0$
$\therefore(m-4)(m+1)=0$
$\therefore m=4$ or -1
But $m=x^{2}$
$\therefore x^{2}=4 \quad$ or $\quad x^{2}=-1$
$\therefore x= \pm 2 \quad$ or $\quad x= \pm \sqrt{-1}$ (invalid)
$\therefore x=2$ or -2
f) Find values of a, b and c if

$$
x^{2}-x \equiv a(x+3)^{2}+b x+c-1
$$

$$
a(x+3)^{2}+b x+c-1=a\left(x^{2}+6 x+9\right)+b x+c-1
$$

$$
=a x^{2}+6 a x+9 a+b x+c-1
$$

$$
=a x^{2}+(6 a+b) x+9 a+c-1
$$

For $x^{2}-x \equiv a(x+3)^{2}+b x+c-1$

$$
\begin{align*}
a & =1 \\
6 a+b & =- \tag{1}\\
9 a+c-1 & =0
\end{align*}
$$

Substitute (1) into (2)

$$
\begin{aligned}
6(1)+b & =-1 \\
b & =-7
\end{aligned}
$$

Substitute (1) into (3)

$$
\begin{aligned}
9(1)+c-1 & =0 \\
c & =-8 \\
\therefore a & =1, b=-7, c=-8
\end{aligned}
$$

