

St Ignatius' College Riverview

Mathematics Assessment Task I Year 12

(*Time allowed – 60 minutes*)

INST	 NSTRUCTIONS: * Answer each question on a separate answer sheet. * Write your name and your teacher's name on each answer sheet * Answer ALL questions. * Approved calculators may be used. 			et.	
QUE	STION	1:	SEQUENCES & SERIES	(20 marks)	
a)	The formula for the <i>n</i> th term of an arithmetic sequence is : $T_n = 2n + 4$				
	i)	What	are the 4th and 5th terms?		(2 marks)
	ii)	What	is the common difference ?		(1 mark)

b) Find the values of x such that $\{3, x + 4, x + 10...\}$ forms a geometric sequence. (2 marks)

c) The 3^{rd} term of an arithmetic progression is 16, and the 12^{th} term is 79.

	i)	Find the first term and common difference .	(2 marks)			
	ii)	Find the sum of the first 25 terms.	(2 marks)			
d)	 A super-ball drops from a height of 9 metres and bounces continually, each successive height being ²/₃ of the previous height. i) Show that the first distance travelled down and up is 15 metres. 					
	ii) When the ball finally comes to rest, through what distance will it have travelled in total?					
e)	How m	hany terms of the series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ give a sum of $\frac{1023}{1024}$?	(3 marks)			

f) The price of windows in a house is \$500 for the first window, then \$300 for each additional window.

i)	Find a formula for the cost of <i>n</i> windows.	(1 marks)
ii)	How much will fifteen windows cost?	(2 marks)
iii)	What is the maximum number of windows whose total cost is less than \$10,000?	(2 marks)

(BEGIN A NEW PAGE) QUESTION 2: THE QUADRATIC FUNCTION (20 marks)

the parabola.

a) By observing the roots in fig. 1, write the equation of $4^{4/7}$

4 - 3 ⋅ (2 marks)

b) Show that equation $2x^2 + x + 4 = 0$ has no real roots. (3 marks)

fig.1

- c) Find all values of k for which the expression $kx^2 + 3kx + 6$ is positive definite. (3 marks)
- **d**) If α and β are the roots of the quadratic equation $x^2 3x 6 = 0$, find the value of:
 - i) $\alpha + \beta$ (1 mark)
 - ii) $\alpha\beta$ (1 mark)
 - iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (2 marks)

iv)
$$\alpha^2 + \beta^2$$
 (2 marks)

e) Solve:
$$x^2 + \frac{4}{x^2} = 5$$
 (3 marks)

f) Find values of a, b and c if $x^2 - x \equiv a(x+3)^2 + bx + c - 1$ (3 marks)

Solutions

a)	The formula for the <i>n</i> th term of an arithmetic		Markers Comments
	sequence is : $T_n = 2n + 4$		
i)	What are the 4 th and 5 th terms?		
	$T_4 = 2(4) + 4$		
	$T_4 = 12$	1	
	$T_5 = 2(5) + 4$	1	
	$T_{5} = 14$	1	
ii)	What is the common difference ?		
	$d = T_5 - T_4$		
	d = 14 - 12	1	
	<i>d</i> = 2		
b)	Find the value of x such that $\{3, x + 4, x + 10\}$		
	forms a geometric sequence.		
	$\frac{x+10}{x+10} = \frac{x+4}{x+10}$	1	
	x + 4 = 3	1	
	3(x+10) = (x+4)(x+4)		
	$3x + 30 = x^2 + 4x + 4x + 16$		
	$3x + 30 = x^2 + 8x + 16$		
	$x^2 + 5x - 14 = 0$		
	(x+7)(x-2)=0	1	
	x = -7 or 2	1	
c)	The 3^{ra} term of an arithmetic progression is 16, and the 12^{th} term is 70		
	i) Find the first term and common		
	difference.		
	a + 2d = 16(1)		
	a + 11d = 79(2)		
	Eqn(2) - Eqn(1)	1	
	9d = 63	1	
	d = 7		
	Sub $d = 7$ into $Eqn(1)$		
	a + 2(7) = 16	1	
	a = 2		
	ii) Find the sum of the first 25 terms.		
	$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$		
	$S_{25} = \frac{25}{2} \left(2(2) + (25 - 1)7 \right)$	1	
	S ₂₅ = 2150	1	
d)	A super-ball drops from a height of 9 metres and		
	bounces continually, each successive height being		
	$\frac{2}{3}$ of the previous height.		

	i) Show that the first distance travelled down		
	and up is 15 metres.		
	Distance down once $= 9$ metres		
-			
d)	i)Continued.		
	Distance up once = $9 \times \frac{2}{-}$		
	3		
	= 6	1	
	\therefore Total distance = 9+6	1	
	= 15 metres		
II)	distance will it have travelled in total?		
	$S_{\infty} = \frac{a}{1}$		
	1-r	1	
	Total distance = $2\left(\frac{6}{-1}\right) + 9$		
	$\left(1-\frac{2}{3}\right)^{1/2}$		
	Total distance $=45$ metres	1	
	1 1 1		
e)	How many terms of the series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$		
	1023		
	give a sum of $\frac{1023}{1024}$?		
	1024		
	$a = \frac{1}{2}, r = \frac{1}{2}$	1	
	$\begin{pmatrix} 2 & 2 \\ 1 & n \end{pmatrix}$ 1022		
	$\frac{a(1-r^{*})}{a(1-r^{*})} = \frac{1023}{1000}$		
	$\frac{1-r}{1-r}$ 1024		
	$\frac{1}{2}\left(1-\frac{1}{2}^{n}\right)$ 1023	1	
	$\frac{1}{1-\frac{1}{2}} = \frac{1}{1024}$	1	
	1023		
	$1 - \frac{1}{2}^{n} = \frac{1024}{1024}$		
	$\frac{1}{2}^{n} = \frac{1}{1024}$		
	$(2^{-1})^n$ 2^{-10}		
	$(2^{-1}) = 2^{-10}$		
	$2^{-n} = 2^{-10}$	1	
6	$\frac{n=10}{10}$	1	
1)	i ne price of windows in a nouse is \$500 for the first window, then \$200 for each additional		
	window		
	i) Find a formula for the cost of n windows		
	T = 200 + 300n	1	
	\mathbf{i}_n How much will fifteen windows cost?		
	$T = 200 \pm 200n$ where $n = 15$		
	$I_n - 200 + 500n$ where $n = 15$	1	
	$T_{15} = 200 + 300(15)$		
	$T_{15} = 4700$		
	∴ 15 widows will cost \$4700	1	
	iii) What is the maximum number of windows		

whose total cost is less than \$10,000?		
10000 = 200 + 300n		
9800 = 300n	1	
n = 32.8		
: 32 windows	1	
2a) By observing the roots in fig. 1, write the equation		
of the parabola.		
$\alpha = -1 \text{ and } \beta = 4$	1	
$(x-\alpha)(x-\beta)=0$		
$\therefore (x+1)(x-4) = 0 \qquad -3 - 2 - \sqrt{1 + 1 - 2 - 3} = 4 - 5 - 6$		
$\therefore x^2 - 4x + x - 4 = 0$		
$x^2 - 3x - 4 = 0$	1	
b) Show that equation $2x^2 + x + 4 = 0$ has no real		
roots.		
No real roots $\therefore \Delta < 0$	1	
$b^2 - 4ac < 0$	1	
$(1)^2 - 4(2)(4) < 0$		
1 - 32 < 0		
-31<0	2	
$\therefore \Delta < 0$		
∴ No real roots		
c) Find all values of k for which the expression		
$kx^2 + 3kx + 6$ is positive definite.		
Positive Definite $a > 0$ and $A < 0$	1	
h^2 Are < 0		
$b^{2} - 4ac < 0$		
(3k) - 4(k)(6) < 0		
$9k^2 - 24k < 0$	1	
3k(3k-8) < 0		
$\therefore 0 < k < \frac{8}{3}$	1	
d) If α and β are the roots of the quadratic equation		
$x^2 - 3x - 6 = 0$, find the value of:		
1) $\alpha + \beta$		
$\alpha + \beta = \frac{-b}{-b}$		
$\begin{pmatrix} a \\ (2) \end{pmatrix}$		
$\alpha + \beta = \frac{-(-3)}{1}$		
1	1	
$\alpha + \rho = s$		
ii) $\alpha\beta$		

$\alpha\beta = \frac{c}{c}$			
a - 6			
$\alpha\beta = \frac{\beta}{1}$		1	
$\alpha\beta = -6$			
iii) $\frac{1}{-} + \frac{1}{-}$	$=\frac{\beta}{\alpha}+\frac{\alpha}{\alpha}$		
$\alpha \beta$	$\alpha\beta$ $\alpha\beta$		
	$=\frac{\alpha+p}{\alpha\beta}$		
	3	1	
	$=\frac{5}{-6}$		
	1		
	2	1	
$a^2 + \rho^2$	$-(\alpha+\beta)^2 - 2\alpha\beta$	1	
\mathbf{N} $\alpha + \rho$	$-(\alpha + \beta) - 2\alpha\beta$ $-(2)^2 - 2(-\epsilon)$		
	= (3) = 2(-6) = 9 + 12	1	
	= 21		
		1	
a) Solve: $r^2 + \frac{4}{-5}$			
(c) Solve. $x + \frac{1}{x^2} - 5$			
$x^4 + 4 = 5x^2$		1	
$x^{+} - 5x^{-} + 4 = 0$			
$\therefore m^2 - 5m + 4 = 0$			
$\therefore (m-4)(m+1) = 0$			
$\therefore m = 4 \text{ or } -1$		1	
But $m = x^2$			
$\therefore x^2 = 4$ or	$x^2 = -1$		
$\therefore x = \pm 2$ or	$x = \pm \sqrt{-1}$ (invalid)	1	
$\therefore x = 2 \text{ or } -2$	1	1	
1) Find values of <i>a</i> , <i>b</i> and $r^2 - r = a(r+3)^2 + b^2$	1 C II r + c - 1		
$a(x+3)^2 + bx + c - 1 - a(x^2)^2$	+6r+9)+br+c-1		
a(x+3) + bx + c = 1 = a(x) = $ax^{2} + bx$	+6ax+9a+bx+c-1		
$=ax^2$	+(6a+b)x+9a+c-1	1	
For $x^2 - x \equiv a(x+3)^2$	+bx+c-1		
a = 1	(1)		
6a+b=-1	(2)		
Substitute (1) into (2)	(3)	1	

6(1) + b = -1		
b = -7		
Substitute (1) into (3)		
9(1) + c - 1 = 0		
c = -8	1	
$\therefore a = 1, b = -7, c = -8$	1	