QUESTION 1 (14 marks)

(a)	A parabola has equation $8y = x^2 - 6x - 3$		
	i)	Write its equation in the form $(x-h)^2 = 4a(y-k)$	(2)
	ii)	Find the coordinates of the vertex	(1)
	iii)	Find the coordinates of the focus	(1)
	iv)	What is the equation of the directrix?	(1)
	v)	Sketch the parabola labelling the above features.	(2)

(b) Find the equation of the parabola with vertex (-5,0) and focus (0,0). (2)

- i) Write down the gradient of AP in terms of x and y (1)
- ii) Show that the equation of the locus of all points *P* such that *OP* is perpendicular to *AP* is $x^2 2x + y^2 = 0$

(2)

iii) Hence show that the locus of all points P such that OP is perpendicular to AP is a circle. Write down the centre and radius of this circle.

(2)

QUESTION 2 (12 marks)

- (a) Find the domain for which $f(x) = 6 2x x^2$ is a decreasing function.
- (b) Copy carefully or trace, the sketch of y = f'(x) given below. On the same set of axes, draw a possible graph of y = f(x). (1)

(2)

(c) Sketch the curve which passes through the origin with the equation y = f(x)given that $\frac{dy}{dx} = 0$ at the points (0,0)(2,-4) and (4,0) and that $\frac{dy}{dx} = -1$ when x = -1. (2)

(d) A cylinder is closed at both ends. Its surface area is given by $SA = 2\pi r (r + h)$ and is known to be 600π cm².

i) Show that the height is given by
$$h = \frac{300}{r} - r$$
 (2)

ii) The volume of the cylinder is given by $V = \pi r^2 h$. Show that the volume of the cylinder may also be written as $V = 300\pi r - \pi r^3$. (1)

- iii) Find the radius which gives the maximum volume. (3)
- iv) Show that the maximum volume is 2000π cm³. (1)