

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

November 2002

First HSC Assessment Task

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 60

- All Questions may be attempted
- Each Question is worth 12 marks

Examiner - A.M.Gainford

Question 1. (12 Marks) (Start a new booklet.)

(a) Calculate $\left(5 \cdot 413698 \times 10^{12}\right) \div\left(2 \cdot 910064 \times 10^{17}\right)$, giving your answer in scientific notation, correct to 6 significant figures.
(b) Calculate the probability of obtaining a total of 8 when two standard dice are rolled.
(c) Factorise completely $2 x^{2}+2 x-12$.
(d) In the figure $A B C D, A B\|C D, A D\| C B$ and $A C \perp B D$. If $A B=7 \mathrm{~cm}, A D=x \mathrm{~cm}$, find the value of x.

(e) Write an equation for the parabola with vertex $(0,0)$ and focus $(0,2)$.
(f) Sketch on the number plane the graph of the function $y=\log _{3} x$ in the domain $0<x \leq 9$.
(g) Find the 24th term of the arithmetic series $7+4 \frac{1}{2}+2+\ldots$
(h) Given that $\log _{a} 10=2 \cdot 094$ and $\log _{a} 2=0 \cdot 6309$, find $\log _{a} 500$.
(i) Find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.
(j) Find the values of k for which $x^{2}+k x+2$ is positive definite.

Question 2. (12 Marks) (Start a new booklet.)

(a) Find and simplify the derivative of each of the following:
(i) $x^{3}-3 x^{2}+x-2$
(ii) $\sqrt{1-x}$
(iii) $\quad x \sqrt{1-x^{2}}$
(iv) $\frac{x+2}{1-x}$
(b) Consider the parabola with equation $y=\frac{1}{4} x^{2}-x$
(i) Write the equation in the form $(x-h)^{2}=4 a(y-k)$.
(ii) State the vertex and focus.
(iii) Sketch the curve.
(c) (i) Evaluate $\sum_{r=1}^{5} 2 r-1$
(ii) Express the geometric series $1+2+4+8+\ldots+256$ in sigma notation.

Question 3. (12 Marks) (Start a new booklet.)

(a) Seventy-five tagged fish are released into a dam known to contain fish. Later a sample of forty-two fish was netted from this dam and then released. Of these forty-two fish it was noted that five were tagged.

Estimate the number of fish in the dam.
(b) The vertices of a triangle are $A(3,4), B(-2,2)$ and $C(5,-3)$.
(i) Find the coordinates of D, the midpoint of the side $B C$.
(ii) Write down the equation of the side $A B$.
(iii) Find the equation of the line through C parallel to $A D$.
(iv) Find the coordinates of E, the point of intersection of the two lines descrbed in parts (ii) and (iii).
(c) (i) Find the value of m for which $\log \left(9^{m}\right)=\log 3-\log \sqrt{3}$.
(ii) Evaluate $\log _{b} a \times \log _{a} b$.

Question 4. (12 Marks) (Start a new booklet.)

(a) Given the expression $2 x^{2}+4 x-1$:
(i) Find the value of x when the expression has its minimum value.
(ii) State the minimum value of this expression
(b) Find the co-ordinates of the point on the curve $y=x^{3}+3 x^{2}+3 x-7$ where the gradient of the tangent is zero.
(c) The twelfth term of an arithmetic series is 2, and the fifteenth term is -4 . Find the first term and the common difference.
(d) (i) Write a quadratic equation with roots -5 and 7.
(ii) Solve the quadratic inequality $x^{2}-2 x-3 \geq 0$.
(e) Consider the recurring decimal fraction $F=0.4 \dot{3} \dot{7}$.
(i) Express F as an infinite sum of terms, all but the first of which form a geometric series.
(ii) Hence or otherwise express F as a common fraction in lowest terms.

Question 5. (12 Marks) (Start a new booklet.)

(a) Solve the equation $x^{4}-3 x^{2}+2=0$.
(b) Consider the curve with equation $y=x-\frac{1}{x}, \quad x>0$:
(i) Find the gradient of the tangent at the point on the curve where $x=2$.
(ii) Write in general form the equations of the tangent and normal to the curve at this point.
(c) An amount $\$ A$ is borrowed at $r \%$ per annum reducible interest, calculated monthly. 7 The loan is to be repaid in equal monthly instalments of $\$ M$.

Let $R=\left(1+\frac{r}{1200}\right)$ and let $\$ B_{n}$ be the amount owing after n monthly repayments have been made.
(i) Show that $B_{n}=A R^{n}-M\left(\frac{R^{n}-1}{R-1}\right)$.

Pat borrows $\$ 90000$ at 8% per annum reducible interest, calculated monthly. The loan is to be repaid in 96 equal monthly instalments.
(ii) Show that the monthly repayments should be $\$ 1272 \cdot 30$.
(iii) With the twenty-fourth payment, Pat pays an additional $\$ 10000$, so this payment is $\$ 11272 \cdot 30$. After this, repayments continue at $\$ 1272 \cdot 30$ per month. How many more repayments will be needed?

This is the end of the paper.

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS
November 2002

First Assessment

Mathematics

Sample Solutions

Question 1

1/ a) $5415648 \times 10^{12} \div 2.910064 \times 10^{17}$
6.5.5) 1.86037×10^{-5}
b) $5 / 36$ (T)
c)

$$
\begin{aligned}
& 2\left(x^{2}+x-6\right) \\
& 2(x+3)(x-2)
\end{aligned}
$$

(1). fraboreght
d) $x=7$
(1)
$3 \quad x^{2}=8 y$

(5)

$$
\begin{array}{rlrl}
d=-2 \hat{L} & T_{r_{4}} & =a+23 d \\
a=7 & & =7+23 x-5 / 2 \\
& =7-57 \frac{1}{2} \\
& =502
\end{array}
$$

4)

$$
\begin{aligned}
\log 500 & =\log \frac{10050}{2} \\
& =\log 1000-1092 \\
& =3 \log 10-1052 \\
& =6.282-0.6309 \\
& =5.6511
\end{aligned}
$$

2

$$
\begin{aligned}
& \operatorname{lin} \frac{(x+3)(x-3)}{x-3}=\ln x+3=6 \\
& k^{2}-8<0 \\
& -\sqrt{8}<k<\sqrt{x}
\end{aligned}
$$

Q1.
a) 1.86037×10^{-5}
b) $5 / 36$
c) $2(x+3)(x-2)$
d) $x=7$
e) $x^{2}=8 y$
f)

9) $5_{4}=a+202 d \quad-50 \frac{1}{2}$
h) 5.6511
i) 6
(2)

1) $-\sqrt{8}<k<\sqrt{8}$

2

Question 2

(a) (i) $\frac{d}{d x}\left(x^{3}-3 x^{2}+x-2\right)=3 x^{2}-6 x+1$
(ii) $\sqrt{1-x}=(1-x)^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d}{d x}(1-x)^{\frac{1}{2}} & =\frac{1}{2}(1-x)^{-\frac{1}{2}} \times-1 \\
& =-\frac{1}{2}(1-x)^{-\frac{1}{2}} \\
& =-\frac{1}{2 \sqrt{1-x}}
\end{aligned}
$$

(iii) $\quad x \sqrt{1-x^{2}}$

$$
\begin{aligned}
& u=x \quad v=\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{\frac{1}{2}} \\
& \begin{aligned}
u^{\prime}=1 \quad v^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \times-2 x=-x\left(1-x^{2}\right)^{-\frac{1}{2}}=-\frac{x}{\sqrt{1-x^{2}}} \\
\begin{aligned}
\frac{d}{d x}\left(x \sqrt{1-x^{2}}\right) & =v u^{\prime}+u v^{\prime} \\
& =\sqrt{1-x^{2}} \times 1+x \times-\frac{x}{\sqrt{1-x^{2}}} \\
& =\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \\
& =\frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \\
& =\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

(iv) $\frac{x+2}{1-x}$

$$
\begin{array}{ll}
u=x+2 & v=1-x \\
u^{\prime}=1 & v^{\prime}=-1
\end{array}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x+2}{1-x}\right) & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(1-x) \times 1-(x+2) \times-1}{(1-x)^{2}} \\
& =\frac{1-x+x+2}{(1-x)^{2}}=\frac{3}{(1-x)^{2}} \\
& =\frac{3}{(x-1)^{2}}
\end{aligned}
$$

(b)
(i) $y=\frac{1}{4} x^{2}-x$
$4 y=x^{2}-4 x$
$4 y+4=x^{2}-4 x+4 \quad$ (complete the square)
$4(y+1)=(x-2)^{2}$
$\therefore(x-2)^{2}=4(y+1)$
$h=2, a=1, k=-1$
(ii) Vertex $(2,-1)$

Focus $(2,0) \quad$ (1 unit above the vertex)
(iii)
NOT TO SCALE \uparrow focus
(c) (i) $\quad \sum_{r=1}^{5}(2 r-1)=1+3+5+7+9=25$
(ii) $1+2+4+8+\mathrm{K}+256=\sum_{r=1}^{9} 2^{r-1}=\sum_{r=0}^{8} 2^{r}$

Question 3

Question 4

(a) $2 x^{2}+4 x-1$

$$
\begin{aligned}
\text { was } \quad x & =-\frac{b}{2 a} \\
x & =-1 \quad y^{*}=-3 \\
\text { (ii) } x & =-1 \\
\text { (ii) } y & =-3
\end{aligned}
$$

(b) $\quad \begin{aligned} & y^{\prime}=3 x^{2}+6 x+3 \\ & 3 x^{2}+6 x+3=0\end{aligned}$

$$
x^{2}+2 x+1=0
$$

$$
(x+1)(x+1)=0
$$

$$
\left[\begin{array}{l}
x=-1 \\
y=-8
\end{array}\right] y=(-1)^{3}+3(-1)^{2}+3(-1)-7
$$

c) (3) $a+11 d=2$
(2) $a+14 d=-4$
(3)-(1) $3 d=-6$

$$
d=-2
$$

(1) $a-22=2$
istien $a=24$
(e) (i) $F=0.4+[0.031+0.00057]$
(ii) ofter 1st term geometio servis
$a=0.037$ ov $\frac{37}{1000}$

$$
r=\frac{1}{100}
$$

$$
S_{\infty}=\frac{a}{1-r}
$$

$=\frac{37}{1000} \div \frac{99}{100}$
$=\frac{31}{1000} \times \frac{100}{99}$
$=\frac{37}{990}$

$$
F=\frac{4}{10}+\frac{37}{990}
$$

$$
=\frac{433}{990}
$$

$$
\begin{aligned}
& \text { or } \\
& x=0.437 .3737 \ldots \\
& 10 x=4.373737 \ldots \\
& 1000 x=437.3737 \ldots \\
& 990 x=433 \\
& x=\frac{433}{990}
\end{aligned}
$$

7) $\left(\begin{array}{l}(x+5)(x-7)=0 \\ \text { (ii) } x^{2}-2 x-3 \geq 0\end{array}\right.$ $(x-3)(x+1) \geqslant 0$

Question 5
(a) $x^{4}-3 x^{2}+2=0$

$$
\left(x^{2}-1\right)\left(x^{2}-2\right)=0
$$

So

$$
\begin{array}{ll}
x^{2}-1=0 & \text { and } \\
x^{2}=1=0 \\
x= \pm 10 & x= \pm \sqrt{2} 0
\end{array}
$$

(b)

$$
\text { b) } \begin{align*}
y & =x-\frac{1}{x} \\
y & =x-x^{-1} \tag{6}\\
\frac{d y}{d x} & =1+x^{-2}=1+\frac{1}{x^{2}}
\end{align*}
$$

(i) at $x=2, m=1+\frac{1}{2^{2}}=1+\frac{1}{4}=1 \frac{1}{4}=\frac{5}{4}$
(ii) At $x=2, y=2-\frac{1}{2}=1 \frac{1}{2}=\frac{3}{2}$ point $\left(2, \frac{3}{2}\right)$ gradient tangent $\frac{5}{4}$
gradent nomal
eq tangent $\quad\left(y-\frac{3}{2}\right)=\frac{5}{4}(x-2)$

$$
\begin{align*}
& \quad 4 y-6=5 x-10 \tag{1}\\
& 5 x-4 y-4=0
\end{align*}
$$

eqn nomal

$$
\begin{aligned}
& \left(y-\frac{3}{2}\right)=-\frac{4}{5}(x-2) \\
& 5 y-\frac{15}{2}=-4 x+8 \\
& 10 y-15=-8 x+16 \\
& 1,8 x+10 y-31=0
\end{aligned}
$$

(c) (i) \$A r\%pia calaulated montthy.
equal instainento $\$ m$.

$$
\begin{aligned}
\$ B_{1} & =A+\left(A \times \frac{r \%}{12}\right)-m \\
& =A+\frac{A r}{\sqrt{200}}-m \\
& =A\left(1+\frac{r}{1200}\right)-m \\
\$ B_{2} & =\left[A\left(1+\frac{r}{1200}\right)-m\right]+\left[A\left(1+\frac{r}{1200}\right)-m\right] \times \frac{r}{1200}-m \\
& =\left[A\left(1+\frac{r}{1200}\right)-m\right]\left[1+\frac{r}{1200}\right]-m \\
& =A\left(1+\frac{r}{1200}\right)^{2}-\left(1+\frac{r}{1200}\right) m-m \\
& =A\left(1+\frac{r}{1200}\right)^{2}-m\left[1+\left(1+\frac{r}{1200}\right)\right] \\
& =A(R)^{2}-m(1+R) \\
\therefore \neq B_{n} & =A R^{n}-m\left(1+R+\cdots+R^{n-1}\right) \\
\mu \operatorname{sing} & S_{n}=\frac{r 6-1}{r-1}=\frac{R \times R^{n-1}-1}{R-1}=\frac{R-1}{R-1}
\end{aligned}
$$

$\therefore \$ B_{n}=A R^{n}-m\left(\frac{R^{n}-1}{R-1}\right)$ as required. (3)
(c) (ii) $590,000 \quad R=1.006=1 \frac{1}{150}$ 96 instalneents

$$
\begin{align*}
& 0=90,000 \times\left(1 \frac{1}{150}\right)^{96}-m\left(\frac{\left(1 \frac{1}{150}\right)^{96}-1}{\left(1 \frac{150}{150}\right)-1}\right) \\
& m=\frac{90000 \times\left(1 \frac{1}{150}\right)^{96}}{\left(\frac{\left(1 \frac{1}{150}\right)^{96}-1}{\left(1 \frac{150}{150}\right)-1}\right)_{14}}=\$ 1272.30 \tag{1}
\end{align*}
$$

(iii) $\begin{aligned} \$ B_{24} & =90000 \times\left(1 \frac{1}{150}\right)^{24}-1272.30\left(\frac{\left(1 \frac{1}{150}\right)^{24}-1}{\left(1 \frac{1}{150}\right)-1}\right) \\ & =\$ 72565.1165\end{aligned}$

Now $\$ B_{24}=\$ 72565 \cdot 1165-\$ 10,000=\$ 62565.1165$

$$
\begin{aligned}
& \text { is yet to be paid. } \\
& \text { So } 0=62565.1165 \times\left(1 \frac{1}{150}\right)^{n}-1272.30\left(\frac{\left(1 \frac{1}{150}\right)^{n}-1}{\left(1 \frac{1}{150}\right)-1}\right) \\
& 0=62565.1165^{n} \times 11006-190845\left(1.006^{n}-1\right) \\
& 0=62565.1165 \times 1.006^{n}-190845 \times 1.006^{n}+190845 \\
& -190845=-128279.8835 \times 1.006 \\
& 1.487723521=1.006 \\
& \text { In } 1.487723521=n \ln 1.006
\end{aligned}
$$

$$
\begin{align*}
& n=\frac{\ln 1.487723521}{\ln 1.006} \\
& n=59.785 \\
& \Rightarrow 60 \text { more paymento } \tag{3}
\end{align*}
$$

