

$\mathscr{S y d u e y}$ 程ayz 期igh Sthanl

MOORE PARK SURRY HILLS

DECEMBER 2003

HSC Assessment Task \#1

YEAR 11

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for careless or badly arranged work.
- Start each question in a separate answer booklet.

Total Marks - 80 Marks

- Attempt Questions 1 to 5
- All questions are of equal value.

Examiner: R. Boros

Question 1: (16 marks)

(a) Evaluate $\log _{p} 18$ given that $\log _{p} 3=0 \cdot 4771$ and $\log _{p} 2=0 \cdot 3010$.
(b) Write a single $\operatorname{logarithm}$ for $\log x-\log y+2 \log z$.
(c) For what value of n is the sum of n terms of $12+15+18+\ldots$ equal to 441 ?
(d) Evaluate $\sum_{n=3}^{13} 2^{n}$
(e) One card is drawn out from a set of cards numbered 1 to 20. Find the probability of drawing out an even number or a number less than 8 .
(f) When 2 regular dice are thrown and the total on these dice are counted, find the probability of scoring a total greater than 7 .
(g) A plant has a probability 0.7 of producing a variegated leaf. If 3 plants are grown, find the probability of producing no plants with variegated leaves.
(h) A coin is tossed n times. Find an expression for the probability of throwing at least 1 tail.

Question 2: (16marks) START A NEW BOOKLET

Marks
(a) \quad Simplify $\frac{\left(x^{m+1}\right)^{2} \times\left(x^{3}\right)^{n+1}}{x^{5 m}}$.
(b) Solve for $x: 2^{x-1}=\frac{\sqrt{2}}{32}$
(c) Write in simplest form: $\frac{2^{n+2}+8}{2^{2 n}+2^{n+1}}$
(d) Show that the points $A(6 a,-2 b), B(2 a, 0)$ and $C(0, b)$ are collinear.
(e) Prove that the points $A(3,5), B(4,4), C(1,1)$ and $D(0,2)$ are the vertices of a rectangle.
(f) Prove that $\triangle A B C$ III $\triangle A D E$. Hence find the values of x and y.

(b) (i) Find the gradient of the tangent to the curve $y=x^{2}+2 x+1$ at the point (x, y).
(ii) Hence find the gradient of the tangent at the point $\left(\frac{1}{2}, 2 \frac{1}{4}\right)$.
(iii) Find the angle which the tangent in (ii) makes with the positive direction of the x axis.
(c) Find the first derivative of:
(i) $y=\frac{-7}{x+1}$
(ii) $y=\left(x^{2}+x\right)^{3}$
(iii) $y=\frac{1}{\sqrt{3 x^{2}+4}}$
(d) Find the gradient of the normal to the curve $y=5 x \sqrt{4-x}$ at the point $(3,15)$
(e) Find the maximum value of the function $y=x^{2}-4 x+3$ in the domain $1 \leq x \leq 4$.

Question 4: (16 marks) START A NEW BOOKLET
(a) For the curve $y=2 x^{3}-3 x^{2}-12 x+2$:
(i) Find all stationary points.
(ii) Determine the nature of the stationary points.
(iii) Find any points of inflexion.
(iv) Sketch the curve.
(b) Show that $y=\frac{5}{x}$ is always a decreasing function for all real $x \neq 0$.
(c) Draw a neat sketch of a continuous curve $y=f(x)$ which has the following features:

$$
\begin{aligned}
& f^{\prime}(x)<0 \text { for } 0 \leq x<3 \\
& f^{\prime}(3)=0 \\
& f^{\prime}(x)>0 \text { for } 3<x<7 \\
& f^{\prime}(7)=0 \text { and } \\
& f^{\prime}(x)>0 \text { for } 7<x \leq 10 .
\end{aligned}
$$

(d) For a certain curve $y^{\prime \prime}=x^{2}(x-1)^{3}(x-3)$, for what values of x is the curve concave up?

Question 5: (16 marks) START A NEW BOOKLET

Marks

(a) Solve for x (correct to 2 decimal places): $2^{x}=3^{x-1}$.
(b) If $x^{2}+y^{2}=7 x y$, show that $\log (x+y)=\log 3+\frac{1}{2} \log x+\frac{1}{2} \log y$.
(c) A ball is dropped from a height of 1 metre and bounces to $\frac{2}{3}$ of its height on each bounce. What is the total distance travelled by the ball?
(d) A sum of $\$ 3000$ is invested at the beginning of each year in a superannuation fund. At the end of 35 years, how much money is available if the money invested earns interest at the rate of 6% per annum (compounded annually).
(e) A sum of \$75000 is borrowed at an interest rate of 12% per annum, monthly reducible. If the money is repaid at regular monthly intervals over 10 years, find the amount of each payment.

DECEMBER 2003

HSC Assessment Task \#1

YEAR 11

Mathematics

SAMPLE SOLUTIONS

$$
\begin{aligned}
& \text { Question (1) } 16 \text { (e). P (even) }=\frac{1}{2} \text {. } \\
& \text { (a) } \log _{p} 18=\log _{p} 3^{2}+\log _{p} 2 \\
& P(x<8)=\frac{7}{20} \\
& =2 \log _{p} 3+\log _{p} 2 \\
& =1.2552 . \quad 2 \\
& \text { (1) (b) } \log x-\log y+2 \log z \\
& =\log \left(\frac{x z^{2}}{y}\right) \text {. } \\
& \text { (c) } \\
& S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& \therefore 441=\frac{n}{2}[24+(n-1) 3] \\
& \therefore 441=\frac{3 n}{2}(n+7) \text {. } \\
& \Rightarrow n^{2}+7 n-294=0 . \\
& \therefore(n+21)(n-14)=0 \\
& \therefore n=14 \quad 2 \\
& \text { (d) } \\
& 2^{3}+2^{4}+\cdots \cdot+2^{13} \\
& h=11, a=2^{3} ; r=3 \text {. } \\
& \therefore s_{11}=8\left(2^{11}-1\right) \\
& =8 \times 2047 \\
& =16376 \text {. } \\
& \therefore P(E) \text { or } P(x<8) \\
& =\frac{1}{2}+\frac{7}{20}-\frac{3}{20} . \\
& \begin{array}{l}
=\frac{14}{20} \\
=7 / 10 \quad 2
\end{array} \\
& c_{f} \text {) } s=6 \times 6=36 \\
& \text { sum }>7 \text {. } \\
& (2,6)(6,2)(3,5)(5,3) \\
& (3,6)(6,3) \cdot(4,4),(4,5) \\
& (5,4),(4,6)(6,4) \cdot(55) \\
& (5,6)(6,5),(6,6) \text {. } \\
& \begin{aligned}
\therefore P(\text { sum }>7) & =\frac{15}{36} \\
& =\frac{5}{12.2}
\end{aligned} \\
& \text { (h) } \\
& P(\text { at least } 1 \text { ta, } l \text {) } \\
& =1-\operatorname{Pr}\left(m_{0} \text { tail }\right) \\
& =1-\frac{1}{2^{n}} \\
& 2
\end{aligned}
$$

$[2]$ 2. (a) $\begin{aligned} \frac{x^{2 m+2} \times x^{3 n+3}}{x^{5 m}} & =\frac{x^{2 m+3 n+5}}{x^{5 m}}, \\ & =x^{3 n-3 m+5} .\end{aligned}$

$$
\begin{aligned}
& \text { Or (if you realised it was a typo)- } \\
& \begin{aligned}
\frac{\left(x^{m+1}\right)^{2} \times\left(x^{3}\right)^{m+1}}{x^{5 m}} & =\frac{x^{2 m+2} \times x^{3 m+3}}{x^{5 m}} \\
& =x^{5}
\end{aligned}
\end{aligned}
$$

(2) (b) $2^{x-1}=2^{1 / 2} \times 2^{-5}$, $x-1=-4 \frac{1}{2}$,
$x=-3 \frac{1}{2}$.
$\left[2\right.$ (c) $\begin{array}{rl}\frac{2^{n+2}+2^{3}}{2^{2 n}+2^{n+1}} & =\frac{2^{2}\left(2^{n}+2\right)}{2^{n}\left(2^{n}+2\right)}, \\ & =2^{2-n} .\end{array}$

2
(d) Slope $\begin{aligned} A B & =\frac{0--2 b}{2 a-6 a}, & \text { Slope } B C & =\frac{b-0}{0-2 a}, \\ & =\frac{2 b}{-4 a}, & & =-\frac{b}{2 a}, \\ & =-\frac{b}{2 a} . & & \text { Slope } A B .\end{aligned}$

As B is common, $A B C$ is a straight line.
(4) (e)

$m_{A B}=-1, \quad$ so $\quad m_{A B} \times m_{B C .}=-1$, $m_{B C}=1$,
$m_{B C} \times m_{C D}=-1$,
$m_{C D}=-1$, $m_{C D} \times m_{D A}=-1$,
$m_{D A}=1$.
$m_{D A} \times m_{A B}=-1$.
\therefore All vertices are right angles and $A B C D$ is a rectangle.
4
(f) \widehat{A} is common,
$A \widehat{B} C=A \widehat{D} E$ (corresponding angles, $B C / / D E$),

$$
\begin{array}{rlrl}
\therefore \triangle A B C / / / \triangle A D E & \text { (equiangular). } \\
& \left.\begin{array}{rlrl}
x+7 & =\frac{8}{13}, & & y \\
x+12 & =\frac{13}{8}, \\
13 x & =8 x+56, & & 2 y
\end{array}\right)=39, \\
5 x & =56, & y & =19 \frac{1}{2} \\
x & =11 \frac{1}{5} & &
\end{array}
$$

Question 3

$$
\text { a) } \begin{align*}
& \lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1} \\
= & \lim _{x \rightarrow 1} \frac{(x-1)(x+3)}{x-1} \\
= & \lim _{x \rightarrow 1}(x+3) \\
= & 4 \tag{2}
\end{align*}
$$

3) $y=x^{2}+2 x+1$
(1) $y^{\prime}=2 x+2$
(${ }^{(1)}$

$$
\begin{align*}
\text { At }\left(\frac{1}{2}, 2 \frac{1}{4}\right) y^{\prime} & =2\left(\frac{1}{2}\right)+2 \\
& =3 \\
\therefore \text { Gradient } & =3 \tag{1}
\end{align*}
$$

(iii) $m=3=\tan \alpha$

Where α is the angle of nidmitro

$$
\begin{align*}
\therefore \alpha & =\tan ^{-1} 3 \\
& =71^{\circ} 34 \tag{1}
\end{align*}
$$

(c)

$$
\begin{align*}
& y=\frac{-7}{x+1} \\
& =-7(x+1)^{-1} \\
& y^{\prime}=7(x+1)^{-2} \times 1 \\
& =\frac{7}{(x+1)^{2}} \tag{1}\\
& \text { (ii) } y=\left(x^{2}+x\right)^{3} \\
& y^{\prime}=3\left(x^{2}+x\right)^{2} \cdot \frac{d}{d x}\left(x^{2}+x\right) \\
& =3\left(x^{2}+x\right)^{2}(2 x+1) \\
& =(6 x+3)\left(x^{2}+x\right)^{2} \Gamma+7 \\
& =3 x^{2}(2 x+1)(x+1)^{2}
\end{align*}
$$

(ii) $y=\frac{1}{\sqrt{3 x^{2}+4}}$

$$
\begin{aligned}
y^{+} & =\frac{-1}{\left(\sqrt{3 x^{2}+4}\right)^{2}} \times \frac{d}{d x} \sqrt{3 x^{2}+4} \\
& =\frac{-1}{3 x^{2}+4} \times \frac{1}{2 \sqrt{3 x^{2}+4}} \cdot \frac{d}{d x}\left(3 x^{2}+4\right. \\
& =\frac{-6 x}{2\left(3 x^{2}+4\right) \sqrt{3 x^{2}+4}} \\
& =\frac{-3 x}{x^{2}\left(3 x^{2}+4\right)^{3 / 2}} \quad[2]
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =5 x \sqrt{4-x} \\
y^{\prime} & =5 \sqrt{4-x}+5 x \frac{-1}{2 \sqrt{4-x}} \\
& =5\left[\sqrt{(4-x}-\frac{x}{2 \sqrt{4-x}}\right]
\end{aligned}
$$

$A+x=3$ Grad. $y+y=5\left[1-\frac{3}{2 x}\right]$

$$
=5\left[-\frac{1}{2}\right]
$$

$$
\begin{equation*}
=-\frac{5}{2} \tag{3}
\end{equation*}
$$

\therefore Grad. of Normal $=\frac{2}{2}$
(e) $y=x^{2}-4 x+3$

Function has a minimum.
\therefore Max Value ot boundary.

$$
\begin{aligned}
& y(1)=1-4+3 \\
& =0 \\
& y(4)=16-16+3 \\
& =3 \\
& \therefore \text { Max Value }=3
\end{aligned}
$$

QUESTION 4
(a) $y=2 x^{3}-3 x^{2}-12 x+2$
(i) Stat. pts where $y^{\prime}=0$

$$
\therefore y^{\prime}=6 x^{2}-6 x-12
$$

ie $y^{\prime}=6(x-2)(x+1)=0$
when $x=2$ and $x=-1$
$\therefore(2,-18)$ and $(-1,9)$
(ii) $y^{\prime \prime}=12 x-6$

$$
\begin{gathered}
A 4 x=2, y^{\prime \prime}=18>0 \\
\therefore \min (2,-18) \quad 1 \\
\text { At } x=-1, y^{\prime \prime}=-18<0 \\
\therefore \operatorname{MAN}(-1,9) \quad
\end{gathered}
$$

(iii) For P.O.I. $f^{\prime \prime}(x)=0$ and there must be a change of concalidy, is $f^{\prime \prime}(x)$ mist change sign.

\therefore at $x=\frac{1}{2}$ curve changes 1 conconityie from cod. to c.u.
(iv)

(b)

$$
\begin{aligned}
y & =\frac{5}{x} \\
\frac{d y}{d x} & =-\frac{5}{x^{2}}<0
\end{aligned}
$$

for all neal x where $x \neq 0$
$\therefore y=\frac{5}{x}$ is decreasing for these values of x.
(c)

(d) $y^{\prime \prime}=x^{2}(x-1)^{3}(x-3)$
c.u. when $y^{\prime \prime}>0$

\therefore Cu. when
$x \leqslant 1$ and $x>3$
Note: $x \neq 0$

Question 5

(a) $\quad 2^{x}=3^{x-1}$

$$
\begin{aligned}
& \log _{10} 2^{x}=\log _{10} 3^{x-1} \\
& x \log _{10} 2=(x-1) \log _{10} 3 \\
& x \log _{10} 2-x \log _{10} 3=-\log _{10} 3 \\
& x\left(\log _{10} 2-\log _{10} 3\right)=\log _{10} 3^{-1}=\log _{10} 1 / 3 \\
& x\left(\log _{10} 2 / 3\right)=\log _{10} 1 / 3 \\
& x=\frac{\log _{10} 1 / 3}{\log _{10} 2 / 3} \approx 2 \cdot 71
\end{aligned}
$$

(b) $x^{2}+y^{2}=7 x y \Rightarrow x^{2}+y^{2}+2 x y=9 x y$ $x^{2}+y^{2}+2 x y=(x+y)^{2}=9 x y$
$\therefore \log (x+y)^{2}=\log 9 x y$
$\therefore 2 \log (x+y)=\log 9+\log x+\log y=\log 3^{2}+\log x+\log y$
$\therefore 2 \log (x+y)=2 \log 3+\log x+\log y$
$\therefore \log (x+y)=\log 3+\frac{1}{2} \log x+\frac{1}{2} \log y$
QED
(c) Distance $=1+2 \times\left(\frac{2}{3} \times 1\right)+2 \times\left(\frac{2}{3} \times \frac{2}{3}\right)+2 \times\left(\frac{2}{3} \times\left(\frac{2}{3}\right)^{2}\right)+\cdots$

$$
\begin{aligned}
& =1+2 \times\left[\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\ldots\right] \\
& =1+2 \times \frac{\frac{2}{3}}{1-\frac{2}{3}}=1+2 \times \frac{\frac{2}{3}}{\frac{1}{3}}=1+2 \times 2=5
\end{aligned}
$$

(d) The first $\$ 3000$ would earn $3000(1 \cdot 06)^{35}$, the next $\$ 3000$ would earn $3000(1 \cdot 06)^{34}$ and so on until the start of the $35^{\text {th }}$ year where the last $\$ 3000$ would earn $3000(1 \cdot 06)$.
So the total investment is worth

$$
\begin{aligned}
& S=3000(1 \cdot 06)^{35}+3000(1 \cdot 06)^{34}+\cdots+3000(1 \cdot 06) \\
& S=3000\left[(1 \cdot 06)+3000(1 \cdot 06)^{2}+\cdots+3000(1 \cdot 06)^{35}\right] \\
&=3000 \times \frac{1 \cdot 06\left[(1 \cdot 06)^{35}-1\right]}{1 \cdot 06-1} \\
&=\$ 354362 \cdot 60
\end{aligned}
$$

(e) Let $\$ M$ be the monthly repayment, let $\$ A_{n}$ be the amount owing after n months.
$12 \% \mathrm{pa}=1 \%$ per month, 10 years $=120$ months

$$
\begin{aligned}
& A_{1}=75000(1 \cdot 01)-M \\
& \begin{aligned}
A_{2}= & A_{1}(1 \cdot 01)-M \\
= & 75000(1 \cdot 01)^{2}-M(1+1 \cdot 01) \\
A_{3} & =A_{2}(1 \cdot 01)-M \\
& =75000(1 \cdot 01)^{3}-M\left(1+1 \cdot 01+1 \cdot 01^{2}\right) \\
A_{n} & =75000(1 \cdot 01)^{n}-M\left(1+1 \cdot 01+\ldots+1 \cdot 01^{n-1}\right) \\
\quad A_{120} & =75000(1 \cdot 01)^{120}-M\left(1+1 \cdot 01+\ldots+1 \cdot 01^{119}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } S_{120}=1+1 \cdot 01+\ldots+1 \cdot 01^{119} \\
& \quad=\frac{1 \cdot 01^{120}-1}{1 \cdot 01-1}=100\left(1 \cdot 01^{120}-1\right) \\
& A_{120}=0 \\
& \Rightarrow M=
\end{aligned}
$$

So the monthly repayment is $\$ 1076 \cdot 03$

