

Sydney Boys High School

> MOORE PARK SURRY HILLS

DECEMBER 2003

HSC Assessment Task #1

YEAR 11

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for careless or badly arranged work.
- Start each question in a separate answer booklet.

Total Marks - 80 Marks

- Attempt Questions 1 to 5
- All questions are of equal value.

Examiner: R. Boros

Question 1: (16 marks)		Marks
(a)	Evaluate $\log_p 18$ given that $\log_p 3 = 0.4771$ and $\log_p 2 = 0.3010$.	2
(b)	Write a single logarithm for $\log x - \log y + 2\log z$.	1
(c)	For what value of <i>n</i> is the sum of <i>n</i> terms of $12 + 15 + 18 +$ equal to 441?	2
(d)	Evaluate $\sum_{n=3}^{13} 2^n$	2
(e)	One card is drawn out from a set of cards numbered 1 to 20. Find the probability of drawing out an even number or a number less than 8.	2
(f)	When 2 regular dice are thrown and the total on these dice are counted, find the probability of scoring a total greater than 7.	2
(g)	A plant has a probability 0.7 of producing a variegated leaf. If 3 plants are grown, find the probability of producing no plants with variegated leaves.	3
(h)	A coin is tossed <i>n</i> times. Find an expression for the probability of throwing at least 1 tail.	2

Question 2: (16marks) START A NEW BOOKLET

(a) Simplify
$$\frac{(x^{m+1})^2 \times (x^3)^{n+1}}{x^{5m}}$$
. 2

(b) Solve for x:
$$2^{x-1} = \frac{\sqrt{2}}{32}$$
 2

(c) Write in simplest form:
$$\frac{2^{n+2}+8}{2^{2n}+2^{n+1}}$$
 2

- (d) Show that the points A(6a, -2b), B(2a, 0) and C(0, b) are collinear.
- (e) Prove that the points A(3,5), B(4,4), C(1,1) and D(0,2) are the vertices of a rectangle.
- (f) Prove that $\triangle ABC \parallel \mid \triangle ADE$. Hence find the values of x and y.

Marks

2

4

Question 3: (16 marks) START A NEW BOOKLET

(a) Find
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$$

(b) (i) Find the gradient of the tangent to the curve
$$y = x^2 + 2x + 1$$
 at the point (x, y) .

- (ii) Hence find the gradient of the tangent at the point $(\frac{1}{2}, 2\frac{1}{4})$.
- (iii) Find the angle which the tangent in (ii) makes with the positive direction of the *x* axis.

(c) Find the first derivative of:

(i)
$$y = \frac{-7}{x+1}$$

(ii) $y = (x^2 + x)^3$
(iii) $y = \frac{1}{\sqrt{3x^2 + 4}}$
5

- (d) Find the gradient of the normal to the curve $y = 5x\sqrt{4-x}$ at the point (3, 15)
- (e) Find the maximum value of the function $y = x^2 4x + 3$ in the domain $1 \le x \le 4$.

Marks

3

Question 4: (16 marks) START A NEW BOOKLET

- (a) For the curve $y = 2x^3 3x^2 12x + 2$:
 - (i) Find all stationary points.
 - (ii) Determine the nature of the stationary points.
 - (iii) Find any points of inflexion.
 - (iv) Sketch the curve.

(b) Show that
$$y = \frac{5}{x}$$
 is always a decreasing function for all real $x \neq 0$.

(c) Draw a neat sketch of a continuous curve y = f(x) which has the following features:

$$f'(x) < 0$$
 for $0 \le x < 3$
 $f'(3) = 0$
 $f'(x) > 0$ for $3 < x < 7$
 $f'(7) = 0$ and
 $f'(x) > 0$ for $7 < x \le 10$.

(d) For a certain curve $y'' = x^2(x-1)^3(x-3)$, for what values of x is the curve concave up?

2

Marks

9

2

Question 5: (16 marks) START A NEW BOOKLET		Marks
(a)	Solve for x (correct to 2 decimal places): $2^x = 3^{x-1}$.	2
(b)	If $x^2 + y^2 = 7xy$, show that $\log(x + y) = \log 3 + \frac{1}{2}\log x + \frac{1}{2}\log y$.	2
(c)	A ball is dropped from a height of 1 metre and bounces to $\frac{2}{3}$ of its height on each bounce. What is the total distance travelled by the ball?	3
(d)	A sum of \$3 000 is invested at the beginning of each year in a superannuation fund. At the end of 35 years, how much money is available if the money invested earns interest at the rate of 6% per annum (compounded annually).	4
(e)	A sum of \$75 000 is borrowed at an interest rate of 12% per annum, monthly reducible. If the money is repaid at regular monthly intervals over 10 years, find the amount of each payment.	5

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

DECEMBER 2003

HSC Assessment Task #1

YEAR 11

Mathematics

SAMPLE SOLUTIONS

$$\begin{array}{c} \begin{array}{c} 16\\ \hline \varphi \ uest \ ion \ 0 \end{array} \\ \hline \left(x \right) \ \left(c_{2} \right) \ \left(c$$

 \therefore All vertices are right angles and ABCD is a rectangle.

(f) \widehat{A} is common,

4

i) A is common, $A\widehat{B}C = A\widehat{D}E$ (corresponding angles, $BC/\!\!/DE$), $\therefore \Delta ABC/\!\!/\Delta ADE$ (equiangular). $\frac{x}{x+7} = \frac{8}{13}, \qquad \frac{y}{12} = \frac{13}{8},$ $13x = 8x + 56, \qquad 2y = 39,$ $5x = 56, \qquad y = 19\frac{1}{2}$ $x = 11\frac{1}{5}$

Question 3
(i)
$$\lim_{x \to 1} \frac{x^{1}+2n-3}{x-1}$$

= $\lim_{x \to 1} \frac{(x-1)(x+1)}{x-1}$
= $\lim_{x \to 1} \frac{(x-1)(x+2)}{x-1}$
= $\lim_{x \to 1} \frac{(x-1)(x+2)}{x-1}$
= $\lim_{x \to 1} \frac{(x+3)}{x-1}$
= $\frac{1}{2}$
(i) $y = x^{2}+2n+1$
(i) $y' = 2x+2$
(i) $y' = 2x+2$
(i) $At (\frac{1}{2}, 2\frac{1}{2}) y' = 2(\frac{1}{2})+2$
= $\frac{-3n}{2}$
(ii) $m = 3 = \pm and$
 $\therefore \text{ fundicul} = 3$
(iii) $m = 3 = \pm and$
 $\therefore \text{ fundicul} = 3$
(iv) $m = 3 = \pm and$
 $\therefore \text{ fundicul} = 3$
(iv) $y = \frac{-7}{2x+1}$
 $= -7(\pi+1)^{-7}$
 $y' = 7(\pi\pi)^{-2}x^{1}$
 $= -7(\pi+1)^{-7}$
(i) $y = \frac{-7}{2x+1}$
 $= -7(\pi+1)^{-7}x^{1}$
 $= -7(\pi+1)^{-7}x^{1}$
 $= -7(\pi+1)^{-7}x^{1}$
 $= -7(\pi+1)^{-7}x^{1}$
 $= -7(\pi+1)^{-7}x^{1}$
 $= -3n(-1)^{-2}x^{1}$
 $= -5(-2x)^{-2}$
 $= -5($

$$\frac{QUESTION 4}{(a) \ y = 2x^{3} - 3x^{2} - 12x + 2}$$
(a) $y = 2x^{3} - 3x^{2} - 12x + 2$
(b) $y = \frac{5}{x}$
(c) $y = 6x^{2} - 6x - 12$
(c) $y = 5$ is decreasing for
 $y = 6(x - 2)(x + 1) = 0$ 3
(d) $y = \frac{5}{x}$
(e) $y = \frac{5}{x^{2}} = 0$
(f) $y = \frac{5}{x^{2}} = 0$
(g) $y = 0$
(g) $y = \frac{5}{x^{2}} = 0$

Question 5

(a)
$$2^{x} = 3^{x-1}$$
$$\log_{10} 2^{x} = \log_{10} 3^{x-1}$$
$$x \log_{10} 2 = (x-1) \log_{10} 3$$
$$x \log_{10} 2 \quad x \log_{10} 3 = \log_{10} 3$$
$$x (\log_{10} 2 \quad \log_{10} 3) = \log_{10} 3^{-1} = \log_{10} \frac{1}{3}$$
$$x (\log_{10} \frac{2}{3}) = \log_{10} \frac{1}{3}$$
$$x = \frac{\log_{10} \frac{1}{3}}{\log_{10} \frac{2}{3}} \quad 2 \quad 71$$

(b)
$$x^{2} + y^{2} = 7xy$$
 $x^{2} + y^{2} + 2xy = 9xy$
 $x^{2} + y^{2} + 2xy = (x + y)^{2} = 9xy$
 $\log(x + y)^{2} = \log 9xy$
 $2\log(x + y) = \log 9 + \log x + \log y = \log 3^{2} + \log x + \log y$
 $2\log(x + y) = 2\log 3 + \log x + \log y$
 $\log(x + y) = \log 3 + \frac{1}{2}\log x + \frac{1}{2}\log y$
QED

(c) Distance =
$$1+2$$
 $(\frac{2}{3} \quad 1)+2$ $(\frac{2}{3} \quad \frac{2}{3})+2$ $(\frac{2}{3} \quad (\frac{2}{3})^2)+\cdots$
= $1+2$ $\frac{2}{3}+(\frac{2}{3})^2+(\frac{2}{3})^3+\cdots$
= $1+2$ $\frac{\frac{2}{3}}{1-\frac{2}{3}}=1+2$ $\frac{\frac{2}{3}}{\frac{1}{3}}=1+2$ $2=5$

(d) The first \$3000 would earn
$$3000(1 \ 06)^{35}$$
, the next \$3000 would earn
 $3000(1 \ 06)^{34}$ and so on until the start of the 35^{th} year where the last \$3000 would
earn $3000(1 \ 06)$.
So the total investment is worth
 $S = 3000(1 \ 06)^{35} + 3000(1 \ 06)^{34} + \dots + 3000(1 \ 06)$
 $S = 3000 \ (1 \ 06) + 3000(1 \ 06)^{2} + \dots + 3000(1 \ 06)^{35}$
 $1 \ 06 \ (1 \ 06)^{35} \ 1$

$$= 3000 \qquad \frac{1000}{1000} = $354362 \ 60$$

(e) Let M be the monthly repayment, let A_n be the amount owing after *n* months.

12% pa = 1% per month, 10 years = 120 months

$$\begin{aligned} A_1 &= 75000(1 \ 01) \quad M \\ A_2 &= A_1(1 \ 01) \quad M \\ &= 75000(1 \ 01)^2 \quad M(1+1 \ 01) \\ A_3 &= A_2(1 \ 01) \quad M \\ &= 75000(1 \ 01)^3 \quad M(1+1 \ 01+1 \ 01^2) \\ A_n &= 75000(1 \ 01)^n \quad M(1+1 \ 01+\ldots+1 \ 01^{n-1}) \\ A_{120} &= 75000(1 \ 01)^{120} \quad M(1+1 \ 01+\ldots+1 \ 01^{119}) \\ &\text{Let } S_{120} &= 1+1 \ 01+\ldots+1 \ 01^{119} \\ &= \frac{1 \ 01^{120} \ 1}{1 \ 01 \ 1} = 100(1 \ 01^{120} \ 1) \\ A_{120} &= 0 \\ M &= \frac{75000(1 \ 01)^{120}}{S_{120}} = 1076 \ 03 \end{aligned}$$

So the monthly repayment is \$1076 03