

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

NOVEMBER 2005

HSC ASSESSMENT TASK #1

Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time 90 minutes
- Write using black or blue pen. Pencil may be used for diagrams
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 70

- All questions may be attempted
- All questions are of equal value

Examiner – R Dowdell

Question 1: (14 marks)

- (a) Write down the derivatives of
 - (i) $x^3 + x^2$
 - (ii) $x^3 x^2$
 - (iii) $x^3 \times x^2$
 - (iv) $\frac{x^3}{x^2}$
- (b) The fifth term of an Arithmetic Series is 1 and the sum of the first 8 terms is6. Find the 11th term.
- (c) Find the values of *A*, *B* and *C* when $2x^2 4x + 3 \equiv A(x-1)^2 + B(x-1) + C$.

(d) The quadratic equation $5x^2 + 3x - 7 = 0$ has roots α and β . Find the value of:

- (i) $\alpha + \beta$ (ii) $\alpha\beta$
- (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
- (iv) $\alpha^2 + \beta^2$

Marks

4

3

3

Marks

2

Question 2: (14 marks) START A NEW BOOKLET

(a) A point moves such that its distance from the point (1, 3) is always equal to its distance from the line x = 5. The path that point moves on is a parabola. For this parabola, determine: its Cartesian equation; (i) (ii) the focus; 5 (iii) the directrix; the focal length; (iv) the axis of symmetry. (v) (b) (i) Find the equation of the line which is perpendicular to 3x + 2y - 7 = 0 and which passes through the point (1, 2). 4 Find the point of intersection of these two lines (ii) Sketch the region represented by $x + 3y \ge 3$ and x - y < 2. (c) 3

(d) Calculate the shortest distance from (2, 3) to the line y = 3x + 2.

Question 3: (14 marks) START A NEW BOOKLET

Marks

7

- (a) (i) Write in simplest form $\log_a x^3 \log_a xz + 2\log_a x$
 - (ii) Make y the subject of $\log_a x \log_a y = 3\log_a(xy)$
 - (iii) Find $\log_6 8$, correct to 3 decimal places.
 - (iv) If $\log_a 7.5 = 3.65$, find the value of *a*, correct to 4 significant figures.

(b) Solve:

(i) $x^6 + 7x^3 = 8$

(ii)
$$(x^2 + x)^2 - 14(x^2 + x) + 24 = 0$$

(iii)
$$x^2 + 5x < 6$$

Question 4: (14 marks) START A NEW BOOKLET

(a) Evaluate the discriminant of $3x^2 + 5x - 7 = 0$. Hence, or otherwise, solve the equation.

(b) For what value(s) of m does $3x^2 + mx + 5 = 0$ have 2 distinct, real roots?

(c) 3 white marbles and 5 black marbles are placed in a container.

- (i) A marble is drawn at random from the container. Its colour is noted and it is returned to the container. A second marble is then drawn and its colour noted.
 - (I) Draw a tree diagram which could be used to determine the probability of each possible event.
 - (II) Find the probability that the two marbles drawn have the same colour.

6

4

Marks

2

2

- (ii) If the first marble drawn is not returned to the container, find the probability that the two marbles drawn are the same colour.
- (iii) In a game, if a person draws 2 black marbles, he is allowed to roll a die. If the die roll yields a 6, the person wins \$10. What is the probability of winning \$10 in the game if the first marble drawn is not replaced.
- (d) Bill borrows \$10 000 (at 9% per annum reducible interest) to set up a Home Theatre. He repays the money under the following conditions:
 - no repayment is required until 2 months after the purchase that is, no repayment is due after 1 month
 - the loan is to be repaid by making equal monthly repayments of \$M
 - the loan is to be completely repaid 24 months after the purchase date.

Calculate the size of the monthly repayment \$*M*.

Question 5: (14 marks) START A NEW BOOKLET

3

B represents a general point on the curve y = f(x).

- (i) Write down, in simplest form, the gradient of the secant *AB*.
- (ii) Find the gradient of the tangent to y = f(x) at *A*.
- (iii) Find the equation of the tangent to y = f(x) at the point (3, 9).
- (b) (i) **Copy and complete** the following table in your answer booklet (giving answers to 3 decimal places).

h	0.1	0.01	0.001
$\frac{2^h-1}{h}$			

(ii) If $A = \lim_{h \to 0} \frac{2^h - 1}{h}$, write down an approximation to A correct to 2 decimal places.

(iii) Show, using first principles, that
$$\frac{d}{dx}(2^x) = A \cdot 2^x$$

Question 5 continues on the next page

4

Question 5 (continued)

(i) Given that
$$n := 1 \times 2 \times 3 \times \dots \times (n-1) \times n$$
 for $n \ge 1$
and that $0 := 1$ show that $\frac{n}{n!} = \frac{1}{(n-1)!}$

(ii) Consider the function

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

- (I) Is E(x) an infinite geometric series? Justify your answer.
- (II) Find an approximation for *E*(1) by using the first five terms of the appropriate series.Write your answer correct to 4 significant figures.

(III) Find the derivative of
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

- (IV) By considering your answer to part (iii), write down a simple relationship between E(x) and E'(x).
- (V) Write down an approximation to the gradient of the tangent to the curve y = E(x) at the point where x = 1.Write your answer correct to 1 decimal place.

End of Paper

7

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

November 2005

Assessment Task #1

Mathematics

Sample Solutions

Question	Marker	
1	AW	
2	DM	
3	FN	
4	AF	
5	EC	

(a) i)
$$d'_{dx}(x^3 + x^2)$$

 $= 3x^2 + 2x$.
(b) $cont)$.
Subs 0 who \mathbb{C} .
 $6 = 8(1-4d) + 28d$.
 $6 = 8-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $6 = 6-32d + 28d$.
 $d = \frac{1}{2}$.
 $0 = 711 = a + (n-1)d$.
 $a = 1 + 10(\frac{1}{2})$.
 $a = 1$
(c) $2x^2 - 4x + 3$
 $a = A(x-1)^2 + B(x-1) + c$.
 $a = A(x-1)^2 + B(x-1) + c$.
 $a = A(x^2 - 2x + 1) + B(x-1) + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
 $a = A(x^2 - 2Ax + A + 6x - B + c$.
Equating coefficients
 $A = 3$ — (f)
 $B = 2$ 0 $0 \in C = 1$)

d) $5x^2 + 3x - 7$. roots x & B. i) $\alpha + \beta = -\frac{3}{5}$ ii) $x\beta = -\frac{1}{5}$ $111) \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ = 17 1V) $\chi^{2} + \beta^{2} = (\chi + \beta)^{2} - 2(\chi\beta)$ $= \left(-\frac{3}{5}\right)^2 - 2\left(-\frac{7}{5}\right)$ = 3 4/25

Question 2 a) (3,3) (1,3) >=5 i) $(y-3)^2 = 4(-2)(x-3)$. $(y-3)^2 = -8(x-3)$ $8x + y^2 - 6y - 15 = 0.$ -ocus (1,3) • . iii) directrix x=5 IV) focal length 2 (-2 is acceptable) V) axis of symmetry y=3. b) i) y=-====== So M1 = 3 $y - 2 = \frac{2}{3}(x - 1)$. Y= 3x+43 81 2x - 3y + 4 = 0.

ii) 2x - By+4=0 Bx+2y-7=0 ØB 3×(A) - 2 ×(B) 6x-9y+1220 6x-4y-1420. -13y+2620 y=2. ٠ Sub into (P) 2-2-6+4=0 $\chi = 1$. point of intersection (1/2). × 1.... y \overline{C} y7x-2 € yz-z +1 ® Kyez-2 Sub (0,0) into (A) 07-2 frue 3 Sub (0,0) into (3 02+1. falser

ax, + by, +c Az d a2+b2 3x-y+2=0. (2,3)1(3) + 23(2 λΞ 19+ 5 V10 -5./10 10 z V10 2. 1

Question 3

(a) (i)
$$\log_a x^3 - \log_a xz + 2\log_a x$$

 $3\log_a x - (\log_a x + \log_a z) + 2\log_a x$
 $4\log_a x - \log_a z$
 $\log_a \left(\frac{x^4}{z}\right)$

(ii)
$$\log_a x - \log_a y = 3\log_a(xy)$$

 $\log_a\left(\frac{x}{y}\right) = \log_a(xy)^3$
 $\frac{x}{y} = x^3y^3$
 $y^4 = x^{-2}$
 $y = \frac{1}{\sqrt{x}} = \frac{\sqrt{x}}{x} (x, y > 0)$

(iii)
$$\log_6 8 = \frac{\ln 8}{\ln 6} = 1.161 \text{ (3 dec.pl.)}$$

(iv)
$$\log_a 7 \cdot 5 = 3 \cdot 65$$

 $a^{3.65} = 7.5$
 $3 \cdot 65 \ln a = \ln 7 \cdot 5$
 $\ln a = 0.552$
 $a = e^{0.552} = 1 \cdot 737$ (4 sig.fig.)

(b) (i)
$$x^{6} + 7x^{3} - 8 = 0$$
 (Let $a = x^{3}$)
 $a^{2} + 7a - 8 = 0$
 $(a + 8)(a - 1) = 0$
 $a = -8, a = 1 = x^{3}$
 $\therefore x = -2, x = 1$

(ii)
$$(x^2 + x)^2 - 14(x^2 + x) + 24 = 0 \quad a = (x^2 + x)$$

 $a^2 - 14a + 24 = 0$
 $(a - 12)(a - 2) = 0$
 $a = 12, \quad a = 2$
 $(x^2 + x) = 12, \quad (x^2 + x) = 2$
 $(x = 4)(x - 3) = 0, \quad (x + 2)(x - 1) = 0$
 $x = -4, 3, -2, 1$

(iii)
$$x^{2} + 5x - 6 < 0$$

 $(x+6)(x-1) < 0$
 $\therefore -6 < x < 1$

Question 4

(a)
$$\Delta = b^{2} - 4ac$$
$$= (5)^{2} - 4(3)(-7)$$
$$= 25 + 84$$
$$= 109$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
$$x = \frac{-5 \pm \sqrt{109}}{6}$$

(b)
$$\Delta = b^2 - 4ac$$

= $m^2 - 4(3)(5)$
= $m^2 - 60$

For 2 distinct real roots $\Delta > 0$. $m^2 - 60 > 0$ $\left(m - \sqrt{60}\right)\left(m + \sqrt{60}\right) > 0$ $m < -\sqrt{60}, m > \sqrt{60}$ $m < -2\sqrt{15}, m > 2\sqrt{15}$

(II) P(same colour) = P(WW) + P(BB) = $\frac{3}{8} \times \frac{3}{8} + \frac{5}{8} \times \frac{5}{8}$ = $\frac{9}{64} + \frac{25}{64}$

$$=\frac{17}{32}$$

(ii) P(same colour) = P(WW) + P(BB)

$$= \frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{4}{7}$$
$$= \frac{6}{56} + \frac{20}{56}$$
$$= \frac{13}{28}$$
(iii) P(BB) × P(6) = $\frac{5}{8} \times \frac{4}{7} \times \frac{1}{6}$
$$= \frac{5}{84}$$

(d) Let A_n be the amount owing after *n* months. $A_1 = 10000 \times 1 \cdot 0075$ $A_2 = A_1 \times 1 \cdot 0075 - M$ $A_2 = (10000 \times 1 \cdot 0075) \times 1 \cdot 0075 - M$

$$\begin{split} A_2 &= 10000 \times 1 \cdot 0075^2 - M \\ A_3 &= A_2 \times 1 \cdot 0075 - M \\ A_3 &= \left(10000 \times 1 \cdot 0075^2 - M\right) \times 1 \cdot 0075 - M \\ A_3 &= 10000 \times 1 \cdot 0075^3 - M \left(1 + 1 \cdot 0075\right) \\ \vdots \\ \vdots \\ A_{24} &= 10000 \times 1 \cdot 0075^{24} - M \left(1 + 1 \cdot 0075 + \dots + 1 \cdot 0075^{22} \right) \\ But \ A_{24} &= 0 \end{split}$$

:.
$$M(1+1.0075+...+1.0075^{22}) = 10000 \times 1.0075^{24}$$

$$1 + 1 \cdot 0075 + \dots + 1 \cdot 0075^{22}$$
 is a geometric series.
 $a = 1, r = 1 \cdot 0075, n = 23$
 $S_n = \frac{a(1 - r^n)}{1 - r}$

$$S_{23} = \frac{1(1 - 1 \cdot 0075^{23})}{1 - 1 \cdot 0075}$$

$$\approx 25$$

$$\therefore 25M = 10000 \times 1 \cdot 0075^{24}$$

$$M = \$478 \cdot 57$$

Question 5

(4) $(i) \stackrel{m}{A} \stackrel{s}{=} \frac{h^2 + 6h}{h} = -h + 6$ $\left(\frac{1}{10} \right)$ (ii) C(1,1)(a) 2012 , zb 6x - y - q = 0 1s + ke equation<math>ay + g + to y = f(x) at + A(3, q)2 || x² 2 || x² 6 || x² A (3,9). 0.69 4-q=6(n-3)0.72 0.70 0.1 (3+&,9+6&+&) 0.01 ም 0.00 69.0 (田) (王 一 (ii) f(x) is up t d.p. (I) $\left(\frac{x^2}{2!}\right)/(x) \pm \left(\frac{x^3}{3!}\right)/\left(\frac{x^2}{2!}\right)$ $(c) \frac{n}{n!} = \frac{x}{y(n-1)(n-2)} \cdots 3x^{2x} 1$ Ciùi) $\frac{1}{\lambda x} (2x) = (\frac{f(x+k) - f(x+k) = \frac{1}{2^{\kappa}} \frac{2^{\kappa}}{2^{\kappa}} \frac{2^{\kappa}}{2^{\kappa}} \frac{1}{2^{\kappa}}$ $E(i) = |+| + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$ $= A \cdot 2^{\kappa}$ † × A = (in 2 h-1) = 2.708 (4s.f., $+\frac{1}{2}$ $+\frac{1}{3}$

 $(\square) = E'(x) = E(x)$