SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

NOVEMBER 2005

HSC ASSESSMENT TASK \#1

Mathematics

General Instructions

- Reading Time - 5 minutes
- Working Time - 90 minutes
- Write using black or blue pen. Pencil may be used for diagrams
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 70

- All questions may be attempted
- All questions are of equal value

Question 1: (14 marks)

(a) Write down the derivatives of
(i) $x^{3}+x^{2}$
(ii) $x^{3}-x^{2}$
(iii) $x^{3} \times x^{2}$
(iv) $\frac{x^{3}}{x^{2}}$
(b) The fifth term of an Arithmetic Series is 1 and the sum of the first 8 terms is 6 . Find the 11th term.
(c) Find the values of A, B and C when $2 x^{2}-4 x+3 \equiv A(x-1)^{2}+B(x-1)+C$.
(d) The quadratic equation $5 x^{2}+3 x-7=0$ has roots α and β. Find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$

Question 2: (14 marks) START A NEW BOOKLET

(a) A point moves such that its distance from the point $(1,3)$ is always equal to its distance from the line $x=5$. The path that point moves on is a parabola. For this parabola, determine:
(i) its Cartesian equation;
(ii) the focus;
(iii) the directrix;
(iv) the focal length;
(v) the axis of symmetry.
(b) (i) Find the equation of the line which is perpendicular to $3 x+2 y-7=0$ and which passes through the point $(1,2)$.
(ii) Find the point of intersection of these two lines
(c) Sketch the region represented by $x+3 y \geq 3$ and $x-y<2$.
(d) Calculate the shortest distance from $(2,3)$ to the line $y=3 x+2$.

Question 3: (14 marks) START A NEW BOOKLET

(a) (i) Write in simplest form $\log _{a} x^{3}-\log _{a} x z+2 \log _{a} x$
(ii) Make y the subject of $\log _{a} x-\log _{a} y=3 \log _{a}(x y)$
(iii) Find $\log _{6} 8$, correct to 3 decimal places.
(iv) If $\log _{a} 7 \cdot 5=3 \cdot 65$, find the value of a, correct to 4 significant figures.
(b) Solve:
(i) $x^{6}+7 x^{3}=8$
(ii) $\left(x^{2}+x\right)^{2}-14\left(x^{2}+x\right)+24=0$
(iii) $x^{2}+5 x<6$

Question 4: (14 marks) START A NEW BOOKLET

(a) Evaluate the discriminant of $3 x^{2}+5 x-7=0$. Hence, or otherwise, solve the equation.
(b) For what value(s) of m does $3 x^{2}+m x+5=0$ have 2 distinct, real roots?
(c) 3 white marbles and 5 black marbles are placed in a container.
(i) A marble is drawn at random from the container. Its colour is noted and it is returned to the container. A second marble is then drawn and its colour noted.
(I) Draw a tree diagram which could be used to determine the probability of each possible event.
(II) Find the probability that the two marbles drawn have the same colour.
(ii) If the first marble drawn is not returned to the container, find the probabilty that the two marbles drawn are the same colour.
(iii) In a game, if a person draws 2 black marbles, he is allowed to roll a
die. If the die roll yields a 6 , the person wins $\$ 10$. What is the probability of winning $\$ 10$ in the game if the first marble drawn is not replaced.
(d) Bill borrows $\$ 10000$ (at 9\% per annum reducible interest) to set up a Home Theatre. He repays the money under the following conditions:

- no repayment is required until 2 months after the purchase - that is, no repayment is due after 1 month
- the loan is to be repaid by making equal monthly repayments of $\$ M$
- the loan is to be completely repaid 24 months after the purchase date.

Calculate the size of the monthly repayment $\$ M$.

Question 5: (14 marks) START A NEW BOOKLET

(a)

B represents a general point on the curve $y=f(x)$.
(i) Write down, in simplest form, the gradient of the secant $A B$.
(ii) Find the gradient of the tangent to $y=f(x)$ at A.
(iii) Find the equation of the tangent to $y=f(x)$ at the point $(3,9)$.
(b) (i) Copy and complete the following table in your answer booklet (giving answers to 3 decimal places).

h	$0 \cdot 1$	0.01	0.001
$\frac{2^{h}-1}{h}$			

(ii) If $A=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h}$, write down an approximation to A correct to 2 decimal places.
(iii) Show, using first principles, that $\frac{d}{d x}\left(2^{x}\right)=A \cdot 2^{x}$

Question 5 (continued)

(c) (i) Given that n ! $=1 \times 2 \times 3 \times \ldots . \times(n-1) \times n$ for $n \geq 1$ and that $0!=1$ show that $\frac{n}{n!}=\frac{1}{(n-1)!}$
(ii) Consider the function $E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .$.
(I) Is $E(x)$ an infinite geometric series? Justify your answer.
(II) Find an approximation for E (1) by using the first five terms of the appropriate series.
Write your answer correct to 4 significant figures.
(III) Find the derivative of $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}$
(IV) By considering your answer to part (iii), write down a simple relationship between $E(x)$ and $E^{\prime}(x)$.
(V) Write down an approximation to the gradient of the tangent to the curve $y=E(x)$ at the point where $\mathrm{x}=1$.
Write your answer correct to 1 decimal place.

End of Paper

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS
November 2005

Assessment Task \#1

Mathematics

Sample Solutions

Question	Marker
$\mathbf{1}$	AW
2	DM
3	FN
$\mathbf{4}$	AF
$\mathbf{5}$	EC

b) cont).
a)

$$
\begin{aligned}
& \text { i) } d / d x\left(x^{3}+x^{2}\right) \\
& =3 x^{2}+2 x .
\end{aligned}
$$

ii) $d / d x\left(x+x^{3}-x^{2}\right)$

$$
=3 x^{2}-2 x
$$

iii)

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3} \times x^{2}\right) \\
& =\frac{d}{d x}\left(x^{5}\right) \\
& =5 x^{4}
\end{aligned}
$$

iv) $\frac{d}{d x}\left(\frac{x^{3}}{x^{2}}\right)=\frac{d}{d x}(x)$

$$
=1
$$

b) i). $T_{n}=a+(n-1) d$.
when $n=5$

$$
\begin{aligned}
1 & =a+4 d . \\
\therefore a & =1-4 d — \\
S_{n} & =\frac{n}{2}(2 a+(n-1) d)
\end{aligned}
$$

when $n=8$

$$
b=8 a+28 d-(2)
$$

d)

$$
\begin{aligned}
& 5 x^{2}+3 x-7 \\
& \operatorname{roots} \propto \& \beta
\end{aligned}
$$

i) $\alpha+\beta=\frac{-3}{5}$
ii) $\alpha \beta=-\frac{7}{5}$.
iii)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{3}{7}
\end{aligned}
$$

iv)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2(\alpha \beta) \\
& =\left(-\frac{3}{5}\right)^{2}-2\left(-\frac{7}{5}\right) \\
& =3 \frac{4}{25}
\end{aligned}
$$

a)

1) $(y-3)^{2}=4(-2)(x-3)$.

$$
(y-3)^{2}=-8(x-3)
$$

or

$$
8 x+y^{2}-6 y-15=0
$$

ii) $\operatorname{Locus}(1,3)$
iii) directrix $x=5$
iv) focal length 3 (2 is acceptable $)$
v) axis of symmetry $y=3$.
b) i) $y=-\frac{3}{2} x+\frac{7}{2}$

So $m_{1}=\frac{2}{3}$

$$
\begin{aligned}
& y-2=\frac{2}{3}(x-1) \\
& y=\frac{2}{3} x+\frac{4}{3} \\
& \partial r \\
& 2 x-3 y+4=0
\end{aligned}
$$

$$
\text { ii) } \begin{gather*}
2 x-3 y+4=0 \tag{B}\\
3 x+2 y-7=0 \\
3 \times(A)-2 x(B) \\
6 x-9 y+12=0 \\
6 x-4 y-14=0 \\
-13 y+26=0 \\
y=2
\end{gather*}
$$

Subinto (7)

$$
\begin{gathered}
2 x-6+4=0 \\
x=1
\end{gathered}
$$

Point of intersection (1,2).

$$
\begin{gathered}
y>x-2 \\
y \geqslant-\frac{x}{3}+1 \\
\text { Sub }(0,0) \text { into }(3) \\
0>-2 \text { tave }
\end{gathered}
$$

$$
\text { Sub }(0,0) \text { into } 0
$$

$$
0 \geqslant+1 \text {. falsen }
$$

Question 3

(a) (i) $\quad \log _{a} x^{3}-\log _{a} x z+2 \log _{a} x$
$3 \log _{a} x-\left(\log _{a} x+\log _{a} z\right)+2 \log _{a} x$
$4 \log _{a} x-\log _{a} z$
$\log _{a}\left(\frac{x^{4}}{z}\right)$
(ii) $\quad \log _{a} x-\log _{a} y=3 \log _{a}(x y)$
$\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x y)^{3}$
$\frac{x}{y}=x^{3} y^{3}$
$y^{4}=x^{-2}$
$y=\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}(x, y>0)$
(iii) $\quad \log _{6} 8=\frac{\ln 8}{\ln 6}=1 \cdot 161$ (3 dec.pl.)
(iv) $\quad \log _{a} 7 \cdot 5=3 \cdot 65$
$a^{3.65}=7.5$
$3 \cdot 65 \ln a=\ln 7 \cdot 5$
$\ln a=0.552$
$a=e^{0.552}=1.737$ (4 sig.fig.)
(b) (i) $x^{6}+7 x^{3}-8=0 \quad\left(\right.$ Let $\left.a=x^{3}\right)$

$$
\begin{aligned}
& a^{2}+7 a-8=0 \\
& (a+8)(a-1)=0 \\
& a=-8, a=1=x^{3}
\end{aligned}
$$

$$
\therefore x=-2, x=1
$$

(ii) $\quad\left(x^{2}+x\right)^{2}-14\left(x^{2}+x\right)+24=0 \quad a=\left(x^{2}+x\right)$

$$
a^{2}-14 a+24=0
$$

$$
(a-12)(a-2)=0
$$

$$
a=12, \quad a=2
$$

$$
\left(x^{2}+x\right)=12, \quad\left(x^{2}+x\right)=2
$$

$$
(x=4)(x-3)=0, \quad(x+2)(x-1)=0
$$

$$
x=-4,3,-2,1
$$

(iii) $\quad x^{2}+5 x-6<0$

$$
(x+6)(x-1)<0
$$

$$
\therefore-6<x<1
$$

Question 4

(a) $\Delta=b^{2}-4 a c$

$$
\begin{aligned}
& =(5)^{2}-4(3)(-7) \\
& =25+84 \\
& =109
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-5 \pm \sqrt{109}}{6}
$$

(b) $\Delta=b^{2}-4 a c$

$$
\begin{aligned}
& =m^{2}-4(3)(5) \\
& =m^{2}-60
\end{aligned}
$$

For 2 distinct real roots $\Delta>0$.
$m^{2}-60>0$
$(m-\sqrt{60})(m+\sqrt{60})>0$
$m<-\sqrt{60}, m>\sqrt{60}$
$m<-2 \sqrt{15}, m>2 \sqrt{15}$
(c) (i) (I)

(II) $\quad \mathrm{P}($ same colour $)=\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{BB})$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{3}{8}+\frac{5}{8} \times \frac{5}{8} \\
& =\frac{9}{64}+\frac{25}{64} \\
& =\frac{17}{32}
\end{aligned}
$$

(ii) $\quad \mathrm{P}($ same colour $)=\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{BB})$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{2}{7}+\frac{5}{8} \times \frac{4}{7} \\
& =\frac{6}{56}+\frac{20}{56} \\
& =\frac{13}{28}
\end{aligned}
$$

(iii) $\quad \mathrm{P}(\mathrm{BB}) \times \mathrm{P}(6)=\frac{5}{8} \times \frac{4}{7} \times \frac{1}{6}$

$$
=\frac{5}{84}
$$

(d) Let A_{n} be the amount owing after n months.

$$
\begin{aligned}
& A_{1}=10000 \times 1 \cdot 0075 \\
& A_{2}=A_{1} \times 1 \cdot 0075-M \\
& A_{2}=(10000 \times 1 \cdot 0075) \times 1 \cdot 0075-M \\
& A_{2}=10000 \times 1 \cdot 0075^{2}-M \\
& A_{3}=A_{2} \times 1 \cdot 0075-M \\
& A_{3}=\left(10000 \times 1 \cdot 0075^{2}-M\right) \times 1 \cdot 0075-M \\
& A_{3}=10000 \times 1 \cdot 0075^{3}-M(1+1 \cdot 0075) \\
& : \\
& : \\
& A_{24}=10000 \times 1 \cdot 0075^{24}-M\left(1+1 \cdot 0075+\ldots .+1 \cdot 0075^{22}\right)
\end{aligned}
$$

But $A_{24}=0$

$$
\therefore M\left(1+1 \cdot 0075+\ldots+1 \cdot 0075^{22}\right)=10000 \times 1 \cdot 0075^{24}
$$

$$
\begin{aligned}
& 1+1 \cdot 0075+\ldots+1 \cdot 0075^{22} \text { is a geometric series. } \\
& a=1, r=1 \cdot 0075, n=23 \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$$
\begin{aligned}
S_{23} & =\frac{1\left(1-1 \cdot 0075^{23}\right)}{1-1 \cdot 0075} \\
& \approx 25
\end{aligned}
$$

$\therefore 25 M=10000 \times 1 \cdot 0075^{24}$
$M=\$ 478 \cdot 57$

Question 5

