2006

YEAR 11
HSC Task 1
Term 4

Mathematics

General Instructions

- Working time - 90 Minutes
- Reading time - 5 Minutes
- Write using black or blue pen
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Hand in your answer booklets in 5 sections. Section A (Question 1), Section B (Question 2), Section C (Question 3), Section D (Question 4) and Section E (Question 5).

Total Marks - 76

- Attempt Questions 1 -5.
- All questions are NOT of equal value.

Examiner: A. Ward

SECTION A

Question 1 (16 Marks)

Marks
a) Differentiate with respect to x and simplify:
(i) $y=x^{5}-1 \quad 1$
(ii) $y=\left(3 x^{4}-5\right)^{7} \quad 1$
(iii) $y=\frac{x+1}{3-x}$

2
b) Write down the third and fourth terms of the series $12+6+\ldots$ if it is:
(i) an arithmetic series 1
(ii) a geometric series 1
c) (i) Find, to 2 decimal places, the roots of:

$$
2 x^{2}-3 x-4=0
$$

(ii) Show that $2 x^{2}-3 x+4=0$ has no real roots.
d) Determine each of the following:
(i) $\int x^{6} d x \quad 1$
(ii) $\int(x-1)(x+2) d x \quad 2$
(iii) $\int \frac{\sqrt{t}+1}{\sqrt{t}} d t$
e) Three terms of an arithmetic series have the sum 21 and a product of 315 .

Find the 3 numbers.

End of Section A

Question 2. (17 marks)

a) Given that $a b^{c}=d$:
(i) Find b in terms of a, c and d.
(ii) Find c in terms of a, b and d2
(iii) Calculate b, correct to 4 significant figures, when $a=75.12, c=1.142$ and $d=61.94$.
b) Given that, $f(x)=a-2 x-x^{2}$ where a is a constant. Find:
(i) the value for a for which the roots of the equation differ by 3.
(ii) the set of values of a for which $f(x)<0$ for all values of x.
c) At what points does the tangent to $f(x)=2 x^{3}-3 x^{2}+1$, have slope 0 .
d) Evaluate: $\int_{-1}^{2}\left(3 x^{2}-2 x\right) d x$
e) For the function, $f(x)=5 x^{3}-7 x^{2}+3 x+2$
(i) Show that $f(x)$ passes through the point $(1,3)$

At this point, find:
(ii) the gradient. 1
(iii) the equation of the tangent in gradient-intercept form. 1
(iv) the equation of the normal in general form. 2

End of Section B

SECTION C - Start a new booklet

Question 3. (15 marks)

a) Find the values of y which satisfy the equation:

$$
\left(8^{y}\right)^{y} \times \frac{1}{32^{y}}=4
$$

b) A point P is equidistant from the x -axis and the point $F(0,2)$. Find the locus of the point P.
c) Using first principles, find the derivative of the function $f(x)=x^{2}+x$, (all working must be shown).
d) Find the area bounded by $y=\sqrt{x}+3$ and the x-axis for $1 \leq x \leq 4$.
e) The equation $3 x^{2}-6 x+8=0$ has roots α and β. Find an equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
f) A wall vase has one plane face, and its volume is equivalent to that generated when the area enclosed by $x=\frac{y^{3}}{64}+1$, the y-axis and $y=8$, is rotated through two right angles about the y-axis, the units being centimetres. Calculate its volume.

End of Section C

SECTION D - Start a new booklet

Question 4. (12 marks)

a) (i) Tabulate, to 2 decimal places, the values of the function $f(x)=\sqrt{1+x^{2}}$, at unit intervals from $x=2$ to $x=5$ inclusive.
(ii) Use these values to find an estimate, by the trapezoidal rule, of the area between $y=f(x)$ and the x-axis for $2 \leq x \leq 5$ to 3 decimal places..

2
b) A point P has x-coordinate a which is taken to be on the line $y=3 x-9$.
(i) If Q is the point $(1,4)$, show that $P Q^{2}=10 a^{2}-80 a+170 \quad 2$
(ii) Find the value of a which will make $P Q$ a minimum.
(iii) N is a point on the line such that QN is perpendicular to the line. Find the co-ordinates of N .
(iv) Find the equation of $Q N$ in general form.

End of Section D

SECTION E - Start a new booklet

Question 5. (16 marks)

a) Solve for x :
(i) $\log _{5} x+\log _{2} 8=0$
(ii) $\log _{3} x+3 \log _{x} 3=4$
b) Prove that, if the sum of the radii of two circles remains constant, the sum of the areas of the circles is least when the circles are equal.
c) A prize fund is set up with an investment of $\$ 2000$, to provide a prize of $\$ 150$ each year. The fund accrues compound interest at 5\% p.a. paid six monthly. The first prize is awarded 1 year after the initial investment, after interest is received.
(i) Find the value of the fund immediately after the first years prize is drawn from the fund.
(ii) Find the value of the fund immediately after the third prize is drawn from the fund.
(iii) Find the number of prizes of the full $\$ 150$ which can be drawn from the fund.
d) Three real, distinct and non-zero numbers a, b and c are such that a, b, c are in arithmetic series and a, c, b are in geometric series.
(i) Find the numerical value of the common ratio of the geometric series.
(ii) Hence, find an expression in terms of a for the sum to infinity of the geometric series whose first terms are a, c, b.

End of Section E

End of Examination Paper

Question 1
a) i)

$$
\begin{aligned}
y & =x^{5}-1 \\
y^{\prime} & =5 x^{4} \\
y & =\left(3 x^{4}-5\right)^{7} \\
y^{\prime} & =7\left(3 x^{4}-5\right)^{6} / 2 x^{3} \\
& =84 x^{3}\left(3 x^{4}-5\right)^{6}
\end{aligned}
$$

$$
\text { iii) } \begin{array}{rlrl}
y & =\frac{x+1}{3-x} & u=x+1 \times \begin{array}{l}
v=3-x \\
v^{\prime}=-1
\end{array} \quad y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
y^{\prime} & =\frac{(3-x)+(x+1)}{(3-x)^{2}} & & \\
& =\frac{4}{(3-x)^{2}} & &
\end{array}
$$

b) i)

$$
\begin{aligned}
& a=12, d=-6 \\
\therefore & T_{3}=0, T_{4}=-6
\end{aligned}
$$

ii)

$$
\begin{aligned}
& a=12, r=\frac{1}{2} \\
& \therefore T_{3}=3, T_{4}=\frac{3}{2}
\end{aligned}
$$

c)i)

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad\left(2 x^{2}-3 x-4=0\right) \\
& x=\frac{3 \pm \sqrt{9-4(2)(-4)}}{2(2)} \\
& x=\frac{3 \pm \sqrt{41}}{4}
\end{aligned}
$$

$$
x=-0.85,2.35 \text { to } 2 \text { decimal places }
$$

ii)

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& \Delta=(-3)^{2}-4(2)(4) \\
& \Delta=-23
\end{aligned}
$$

since $\Delta<0,2 x^{2}-3 x+4=0$ has no real roots.
d) i) $\int x^{6} d x=\frac{x^{7}}{7}+C$
ii)

$$
\begin{aligned}
\int(x-1)(x+2)^{7} d x & =\int\left(x^{2}+x-2\right) d x \\
& =\frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+c
\end{aligned}
$$

iii)

$$
\begin{aligned}
\int \frac{\sqrt{t}+1}{\sqrt{t}} d t & =\int\left(1+t^{-\frac{1}{2}}\right) d t \\
& =t+\frac{t^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+c \\
& =t+2 \sqrt{t}+c
\end{aligned}
$$

e) let the three terns be $a-d, a, a+d$

$$
\begin{aligned}
& (a-d)+(a)+(a+d)=21 \quad(a-d)(a)(a+d)=315 \\
& 3 a=21 \\
& a=7 \\
& a\left(a^{2}-\alpha^{2}\right)=315 \\
& \text { sub in } a=7 \\
& 7\left(49-d^{2}\right)=315 \\
& 49-d^{2}=45 \\
& -d^{2}=-4 \\
& d^{2}=4 \\
& d= \pm 2
\end{aligned}
$$

\therefore the three terms are 5,7\$9.

Q2.
(a) (N $a b^{c}=d$

$$
\begin{aligned}
& b^{c}=\frac{d}{a} \\
& b=\left(\frac{d}{a}\right)^{\frac{1}{c}} \text { Op } \sqrt[c]{d / a .}
\end{aligned}
$$

(II) $\quad b^{c}=\frac{d}{a}$

$$
\left|c=\log _{b} \frac{d}{a}\right|
$$

(III)

$$
\begin{aligned}
& b=\left(\frac{61.94}{75.12}\right)^{\frac{1}{1.142}} \\
& \mid \stackrel{(1)}{\div}=0.8446!(4.5 .5 /)
\end{aligned}
$$

(b) (i) Let theraots be $\alpha, \alpha-3$.

$$
\begin{aligned}
\text { now } & \begin{aligned}
\alpha+\alpha-3 & =-2 \quad\left(S_{1}=-\frac{b}{a}\right) \\
2 \alpha & =1 \\
\alpha & =\frac{1}{2} . \\
\text { new } S_{2}=\frac{c}{a} & =-a \\
\therefore a & =-\left(\frac{1}{\alpha} \times \frac{-5}{2}\right) \\
a & =\frac{5}{4}
\end{aligned}
\end{aligned}
$$

(11) If $f(x)<0$ the quadratei srould be negativie definite.

$$
\begin{aligned}
& \therefore \quad \Delta<0 \\
& i e \quad(-2)^{2}-4 x-1 \times a<0 \\
& 4+4 a \quad<0 \\
& 4 a<-4 \\
&|a<-1|
\end{aligned}
$$

(c)

$$
f^{\prime}(x)=6 x^{2}-6 x .
$$

let $f^{\prime}(x)=0$

$$
\begin{aligned}
6 x(x-1) & =0 \\
x & =0,1 . \quad \therefore \mid \text { Pormts are }(0,1) \text { and }(1,0) \mid
\end{aligned}
$$

NoTs if $x=0$

$$
\begin{aligned}
& f(0)=0-0+1=1 \\
& \text { if } x=1 \\
& f(1)=2-3+1=0 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{-1}^{2}\left(3 x^{2}-2 x\right) d x & =\left[x^{3}-x^{2}\right]_{-1}^{2} \\
& =(8-4)-(1--1) \\
& =4--2 \quad(\text { NB anewrer } \\
& \left.=6 . \quad \text { is net } 6 u^{2}\right)
\end{aligned}
$$

$(e)(1) f(1)=5-7+3+2=3$.
$\therefore(1,3)$ lies on $f(x)=5 x^{3}-7 x^{2}+3 x+2$.
(11)

$$
\begin{aligned}
f(x) & =5 x^{3}-7 x^{2}+3 x+2 \\
f^{\prime}(x) & =15 x^{2}-14 x+3 \\
\therefore f^{\prime}(\prime) & =15-14+3 \\
& =4
\end{aligned}
$$

(III) $y-3=4(x-1)$

$$
\begin{aligned}
y-3 & =4 x-4 \\
y & =4 x-1
\end{aligned}
$$

(iii) $y-3=-\frac{1}{4}(x-1)$

$$
4 y-12=x+1
$$

in ${ }^{\prime} y=m x+b^{n}$ form.

$$
\frac{x-4 y+13}{4}=0
$$

in "yoreral 7oin"

2006 Mathematics Assessment 1: Solutions Section C

Question 3 (15 Marks)

(a) Find the values of y which satisfy the equation:

$$
\left(8^{y}\right)^{y} \times \frac{1}{32^{y}}=4
$$

Solution: $\quad 2^{3 y^{2}} \times 2^{-5 y}=2^{2}$,

$$
3 y^{2}-5 y-2=0
$$

$$
(3 y+1)(y-2)=0
$$

$$
\therefore y=2,-\frac{1}{3} \text {. }
$$

(b) A point P is equidistant from the x-axis and the point $F(0,2)$.

Find the locus of the point P.

$$
\text { Solution: } \begin{aligned}
P N^{2} & =P S^{2}, \\
y^{2} & =x^{2}+(y-2)^{2}, \\
y^{2} & =x^{2}+y^{2}-4 y+4, \\
& \therefore x^{2}=4(y-1) .
\end{aligned}
$$

(c) Using first principles, find the derivative of the function $f(x)=x^{2}+x$ (all working must be shown).

$$
\text { Solution: } \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0}\left\{\frac{(x+h)^{2}+(x+h)-x^{2}-x}{h}\right\} \\
& =\lim _{h \rightarrow 0}\left\{\frac{x^{2}+2 x h+h^{2}+x+h_{x}^{2}-x}{h}\right\} \\
& =\lim _{h \rightarrow 0}\left\{\frac{2 x h+h^{2}+h}{h}\right\} \\
& =\lim _{h \rightarrow 0}\{2 x+h+1\} \\
& =2 x+1
\end{aligned}
$$

(d) Find the area bounded by $y=\sqrt{x}+3$ and the x-axis for $1 \leq x \leq 4$.

Solution:

$$
\begin{aligned}
\text { Area } & =\int_{1}^{4}\left(x^{\frac{1}{2}}+3\right) d x \\
& =\left[\frac{2 x^{\frac{3}{2}}}{3}+3 x\right]_{1}^{4} \\
& =\frac{16}{3}+12-\left(\frac{2}{3}+3\right) \\
& =\frac{41}{3} \text { or } 13 \frac{2}{3}
\end{aligned}
$$

(e) The equation $3 x^{2}-6 x+8=0$ has roots α and β. Find an equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

$$
\text { Solution: } \begin{array}{rlrl}
\alpha+\beta & =2, & \frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
\alpha \beta=\frac{8}{3} . & & \frac{3}{4} \\
& & \frac{1}{\alpha \beta} & =\frac{3}{8}
\end{array}
$$

\therefore New equation: $x^{2}-\frac{3 x}{4}+\frac{3}{8}=0$,

$$
\text { i.e. } 8 x^{2}-6 x+3=0 .
$$

(f) A wall vase has one plane face, and its volume is equivalent to that generated when the area enclosed by $x=\frac{y^{3}}{64}+1$, the y-axis, and $y=8$, is rotated through two right angles about the y-axis, the units being centimetres. Calculate its volume.

Solution: When x	$=0, y=-4$.
y	V
	$=\frac{1}{2} \pi \int_{-4}^{8} x^{2} d y$,
	$=\frac{\pi}{2} \int_{-4}^{8}\left(\frac{y^{6}}{4096}+\frac{y^{3}}{32}+1\right) d y$,
	$\left.=\frac{y^{7}}{7 \times 4096}+\frac{y^{4}}{4 \times 32}+y\right]_{-4}^{8}$,
0	$=\frac{\pi}{2}\left\{\frac{512}{7}+32+8-\left(-\frac{4}{7}+2-4\right)\right\}$,
	$=\frac{405 \pi}{7}$,
	$\approx 181.76 \mathrm{~cm}^{3}(2$ dec. pl.$)$

QUESTION: 4
a (1)

$$
\begin{aligned}
& f(x)=\sqrt{1+x^{2}} \\
& x \\
& \left.f(x) \left\lvert\, \begin{array}{c|c|c|}
\hline & 3 & 4 \\
\sqrt{5} & \sqrt{10} & \sqrt{17} \\
\sqrt{26} \\
& 2.24 & 3.16 \\
\hline 4.12 & 5.10
\end{array}\right.\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A= & \frac{h}{2}\{f(2)+f(5)+2[f(3)+f(4)]\} \\
& h=\frac{b-a}{h}=\frac{5-2}{3}=1 \\
A= & \frac{1}{2}[2.24+5.10+2(3.16+4.12)] \\
= & 10.950 \quad(3 d . p)
\end{aligned}
$$

b (1)

$$
\begin{aligned}
& P(a, 3 a-9) \quad Q(1,4) \\
& P Q^{2}=\sqrt{(a-1)^{2}+(3 a-9-4)^{2}} \\
& P Q^{2}=a^{2}-2 a+1+9 a^{2}-78 a+169 \\
& P Q^{2}=10 a^{2}-80 a+170
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left(P Q^{2}\right)^{\prime}=20 a-80 \\
& \text { turn pt. 20a=80, } a=4 \\
& \left(P Q^{2}\right)^{\prime \prime}=20 \\
& \left(P Q^{2}\right)^{\prime \prime}>0
\end{aligned}
$$

\therefore min value of $P Q=4$
(iii) Min value when fine 1 to $P Q$

$$
\therefore \quad N \text { is }(4,3)
$$

(iv)

$$
\begin{aligned}
& y-3=-\frac{1}{3}(x-4) \\
& 3 y-9=-x+4 \\
& x+3 y-13=0
\end{aligned}
$$

SECTION E QUESTION 5
ar)
(i)

$$
\begin{aligned}
\log _{5} x & +\log _{2} 8=0 \\
\log _{5} x & =-3 \\
x & =5^{-3}=\frac{1}{125}
\end{aligned}
$$

ii)

$$
\begin{gathered}
\log _{3} x+\frac{\log _{3} 27}{\log _{3} x}=4 \\
\left(\log _{3}\right)^{2}-4 \log _{3} x+3=0 \\
\log _{3} x=3 \text { or } \log _{3} x=1 \\
x=27 \quad \text { or } x=3
\end{gathered}
$$

b))

$$
\begin{aligned}
& r_{1}+r_{2}=k \\
& S=\pi r_{1}^{2}+\pi r_{2}^{2} \\
&=\pi\left(r_{1}^{2}+r_{2}^{2}\right)^{2} \\
&=\pi\left[r_{1}^{2}+\left(k-r_{1}\right)^{2}\right] \\
& S=\pi\left[2 r_{1}^{2}-2 k r_{1}+k^{2}\right] \\
& \frac{d S}{d r_{1}}=\pi\left[4 r_{1}-2 k\right]=0 \\
& \Rightarrow r_{1}=k / 2 \\
& \therefore r_{2}=k / 2 \quad \text { from } \\
& \frac{d^{2} S}{d r_{1}^{2}}=4 \pi>0 \quad \text { miN. }
\end{aligned}
$$

$\left(\right.$ (c) $V_{n}=$ value at end of n yeans (ate rath prize).
(i) $V_{1}=2000(1.025)^{2}-150$

$$
V_{1}=\$ 1951.25
$$

(ii) $V_{1}=2000(1.025)^{2}-150$

$$
\begin{aligned}
& v_{2}=\left[2000(1.025)^{2}-150\right](1.025)^{2}-150 \\
& v_{2}=2000(1.025)^{4}-150\left[1+1.025^{2}\right] \\
& v_{3}=\left\{2000(1.025)^{4}-150\left[1+1.025^{2}\right]\right\} 1.025^{2}-150 \\
& v_{3}=2000(1.025)^{6}-150\left[1+1.025^{2}+1.025^{4}\right]
\end{aligned}
$$

$$
V_{3}=\$ 1846.77
$$

(iii)

$$
\begin{gathered}
V_{n}=2000(1.025)^{2 n}-150\left[1+1.025^{2}+1.025^{4}+\right] \\
\operatorname{let} V_{n}=0 \\
\frac{2000(1.025)^{2 n}}{150}=\frac{1\left(1.025^{2}\right)^{n}-1}{0.050625} \\
0.675(1.025)^{2 n}=1.025^{2 n}-1 \\
1=\left[1.025^{2 n] .(0.325)}\right. \\
n=-\frac{1}{2} \cdot \frac{\log (0.325)}{\log (1.025)} \doteqdot 22
\end{gathered}
$$

$\therefore 22$ prizes
(d))

$$
\begin{aligned}
& \text { (i) } a, b, c \text { A.S. } \\
& a, c, b \\
& \text { G.S. } \\
& \Rightarrow b-a=c-b_{0} \\
& b=\frac{a+c}{2} \\
& r=\frac{c}{a}=\frac{b}{c} \\
& c^{2}=a b \\
& \Rightarrow c^{2}=a\left(\frac{a+c}{2}\right) \\
& 2 c^{2}=a^{2}+a c \\
& 2 c^{2}-a c-a^{2}=0 \\
& \left(\frac{1}{-} a^{2}\right) \quad 2\left(\frac{c}{a}\right)^{2}-\left(\frac{c}{a}\right)-1=0 \\
& \Rightarrow \frac{c}{a}=\frac{1 \pm \sqrt{1-4(2)(-1)}}{4}
\end{aligned}
$$

Common ratio $\frac{c}{a}=1$ or $-\frac{1}{2}$
However only $-\frac{1}{2}$ applies $\therefore r=-\frac{1}{2}$
(ii)

$$
\begin{aligned}
S & =\frac{a}{1-r} \\
& =\frac{a}{1-\left(-\frac{1}{2}\right)} \\
S & =\frac{2}{3} a
\end{aligned}
$$

