

2006

YEAR 11 HSC Task 1 Term 4

Mathematics

General Instructions

- Working time 90 Minutes
- Reading time 5 Minutes
- Write using black or blue pen
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Hand in your answer booklets in 5 sections. Section A (Question 1), Section B (Question 2), Section C (Question 3), Section D (Question 4) and Section E (Question 5).

Total Marks – 76

- Attempt Questions 1 5.
- All questions are NOT of equal value.

Examiner: A. Ward

SECTION A

Question 1 (16 Marks)

Marks

- Differentiate with respect to *x* and simplify: a)
 - $y = x^5 1$ (i) 1 (ii) $y = (3x^4 - 5)^7$ 1

$$(iii) \qquad y = \frac{x+1}{3-x} \tag{2}$$

b) Write down the third and fourth terms of the series 12+6+... if it is:

> (i) an arithmetic series 1 1 (ii) a geometric series

c) (i) Find, to 2 decimal places, the roots of: $2x^2 - 3x - 4 = 0$

2

(ii) Show that
$$2x^2 - 3x + 4 = 0$$
 has no real roots. 1

d) Determine each of the following:

(i)
$$\int x^6 dx$$
 1

(ii)
$$\int (x-1)(x+2)dx$$
 2

(iii)
$$\int \frac{\sqrt{t+1}}{\sqrt{t}} dt$$
 2

e)

Three terms of an arithmetic series have the sum 21 and a product of 315. Find the 3 numbers. 2

End of Section A

SECTION B – Start a new booklet

```
<u>Marks</u>
```

Question 2. (17 marks)

a)	Given that $ab^c = d$:		
	(i)	Find <i>b</i> in terms of <i>a</i> , <i>c</i> and <i>d</i> .	1
	(ii)	Find <i>c</i> in terms of <i>a</i> , <i>b</i> and <i>d</i>	2
	(iii)	Calculate <i>b</i> , correct to 4 significant figures, when	
		a = 75.12, c = 1.142 and $d = 61.94$.	1
b)	Given that, $f(x) = a - 2x - x^2$ where a is a constant. Find:		
	(i)	the value for <i>a</i> for which the roots of the equation differ by 3.	2
	(ii)	the set of values of <i>a</i> for which $f(x) < 0$ for all values of <i>x</i> .	2
c)	At wh	hat points does the tangent to $f(x) = 2x^3 - 3x^2 + 1$, have slope 0.	2
d)	Evalu	hate: $\int_{-1}^{2} (3x^2 - 2x) dx$	2
e)	For the function, $f(x) = 5x^3 - 7x^2 + 3x + 2$		
	(i)	Show that $f(x)$ passes through the point (1,3)	1
	At this point, find:		
	(ii)	the gradient.	1
	(iii)	the equation of the tangent in gradient-intercept form.	1
	(iv)	the equation of the normal in general form.	2

End of Section B

<u>SECTION C – Start a new booklet</u>

Question 3. (15 marks)

4

Marks

End of Section C

<u>SECTION D – Start a new booklet</u>

<u>Marks</u>

Question 4. (12 marks)

a)	(i)	Tabulate, to 2 decimal places, the values of the function	
		$f(x) = \sqrt{1 + x^2}$, at unit intervals from $x = 2$ to $x = 5$ inclusive.	2
	(ii)	Use these values to find an estimate, by the trapezoidal rule, of the	
		area between $y = f(x)$ and the x-axis for $2 \le x \le 5$ to 3 decimal	
		places	2
b)	A point <i>P</i> has <i>x</i> -coordinate <i>a</i> which is taken to be on the line $y = 3x - 9$.		
	(i)	If <i>Q</i> is the point (1,4), show that $PQ^2 = 10a^2 - 80a + 170$	2
	(ii)	Find the value of a which will make PQ a minimum.	2
	(iii)	N is a point on the line such that QN is perpendicular to the line.	
		Find the co-ordinates of N.	2
	(iv)	Find the equation of QN in general form.	2

End of Section D

<u>SECTION E</u> – Start a new booklet

Marks

Question 5. (16 marks)

a)	Solve for <i>x</i> :			
	(i)	$\log_5 x + \log_2 8 = 0$	1	
	(ii)	$\log_3 x + 3\log_x 3 = 4$	2	
b)	Prove	that, if the sum of the radii of two circles remains constant, the sum		
	of the	areas of the circles is least when the circles are equal.	3	
c)	A priz	the fund is set up with an investment of \$2000, to provide a prize of		
	\$150	each year. The fund accrues compound interest at 5% p.a. paid six		
	monthly. The first prize is awarded 1 year after the initial investment,			
	after i	nterest is received.		
	(i)	Find the value of the fund immediately after the first years prize is		
		drawn from the fund.	1	
	(ii)	Find the value of the fund immediately after the third prize is		
		drawn from the fund.	2	
	(iii)	Find the number of prizes of the full \$150 which can be drawn		
		from the fund.	3	
d)	Three real, distinct and non-zero numbers a, b and c are such that a, b, c			
	are in arithmetic series and a, c, b are in geometric series.			
	(i)	Find the numerical value of the common ratio of the geometric		
		series.	2	
	(ii)	Hence, find an expression in terms of a for the sum to infinity of	-	
		the geometric series whose first terms are a, c, b.	γ	
			4	

End of Section E

End of Examination Paper

 $\frac{Question 1}{(a) i) y = 3x^{5} - 1}$ $y' = 5x^{4}$ $y' = (3x^{4} - 5)^{7}$ $(i) y = (3x^{4} - 5)^{7}$ $y' = 7(3x^4-5)^6/2x^7$ = $84x^3(3x^4-5)^6$ $u = x + 1 \times v = 3 - 21$ $u' = 1 \times v' = -1$ $y' = \frac{vu' - uv'}{v^2}$ $iii) y = \frac{x+1}{3-x}$ $y' = \frac{(3-\varkappa) + (\varkappa + 1)}{(3-\varkappa)^2}$ $=\frac{4}{(3-x)^2}$ b)i) a= 12, d=-6 $T_3 = 0, T_4 = -6$ ii) $\alpha = 12, r = \frac{1}{2}$ $T_{3} = 3, T_{4} = \frac{3}{2}$ $\left(2\varkappa^2-3\varkappa-4=0\right)$ c)i) $x = -b \pm \sqrt{b^2 - 4ac}$ $\chi = \frac{3 \pm \sqrt{9 - 4(2)(-4)}}{2(2)}$ $x = \frac{3 \pm J 4 I}{4}$ x= -0.85, 2.35 to 2 decimal places $(2\pi^2 - 3\pi + 4 = 0)$ ii) $\Delta = b^2 - 4ac$ $\Delta = (-3)^2 - 4(2)(4)$ A = -23since $\Delta < 0$, $2\pi^2 - 3\pi + 4 = 0$ has no real roots. $d(i) \int x^6 dx = \frac{x^7}{7} + C$ ii) $\int (\pi - 1)(\pi + 2) d\mu = \int (\pi^2 + \pi - 2) d\pi$ $= \frac{n}{2} + \frac{n}{2} - 2n + C$

 $\begin{array}{l} \text{III} \end{array} \int \frac{\sqrt{t+1}}{\sqrt{t}} dt = \int (1+t^{-\frac{1}{2}}) dt \\ \hline \end{array}$ $= t + \frac{z^{\frac{1}{2}}}{(\frac{1}{2})} + c$ $= t + 2 \int t + C$ e) let the three terms be a-d, a, atd (a-d) + (a) + (a+d) = 21(a-d)(a)(a+d) = 315 3a = 2/a = 7 $a\left(a^2-d^2\right)=315$ subin a=7 $7(49-d^2)=315$ 49-d2= 45 $-d^2 = -4$ $d^2 = 4$ $d = \pm 2$

: the three terms are 5,7 \$ 9.

Q2.

$$b^{c} = \frac{d}{a}$$

$$|c = \log_{b} \frac{d}{a}|$$

(b) (1) Let the roots he d, d-3. Now d+d-3 = -2 $(S_1 = -\frac{b}{a})$. 2d = 1 $d = \frac{1}{a}$. Man $S_2 = \frac{c}{a} = -a$ $\therefore a = -(\frac{1}{a} \times -\frac{5}{a})$ $|a = \frac{5}{4}|$

(") If f(x) < 0 the quadratic would be regative definite. $\therefore \Delta < 0$ $ie (-2)^2 - 4x - 1 \times a < 0$ 4 + 4a < 0 4a < -4|a < -1|

(c)
$$f(x) = 6x^{2} - 6x$$
.
Net $f(x) = 0$
 $x = 0, 1$. $\therefore \left[\frac{P_{0}}{P_{0}} \frac{P_{0}}{P_{0}}$

2006 Mathematics Assessment 1: Solutions Section C

Question 3 (15 Marks)

- (a) Find the values of y which satisfy the equation: $(8^{y})^{y} \times \frac{1}{32^{y}} = 4$ Solution: $2^{3y^{2}} \times 2^{-5y} = 2^{2},$ $3y^{2} - 5y - 2 = 0,$
 - $3y^2 3y 2 = 0,$ (3y+1)(y-2) = 0, $\therefore y = 2, -\frac{1}{3}.$
- (b) A point P is equidistant from the x-axis and the point F(0, 2). Find the locus of the point P.

(c) Using first principles, find the derivative of the function $f(x) = x^2 + x$ (all working must be shown).

Solution:
$$f'(x) = \lim_{h \to 0} \left\{ \frac{(x+h)^2 + (x+h) - x^2 - x}{h} \right\},$$
$$= \lim_{h \to 0} \left\{ \frac{x^2 + 2xh + h^2 + x + h_x^2 - x}{h} \right\},$$
$$= \lim_{h \to 0} \left\{ \frac{2xh + h^2 + h}{h} \right\},$$
$$= \lim_{h \to 0} \{2x + h + 1\},$$
$$= 2x + 1.$$

|2|

3

 $\boxed{2}$

(d) Find the area bounded by $y = \sqrt{x} + 3$ and the x-axis for $1 \le x \le 4$.

(e) The equation $3x^2 - 6x + 8 = 0$ has roots α and β . Find an equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Solution:
$$\alpha + \beta = 2$$
, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$,
 $\alpha \beta = \frac{8}{3}$. $= \frac{3}{4}$,
 $\frac{1}{\alpha \beta} = \frac{3}{8}$.
 \therefore New equation: $x^2 - \frac{3x}{4} + \frac{3}{8} = 0$,
 $i.e. \ 8x^2 - 6x + 3 = 0$.

2

2

(f) A wall vase has one plane face, and its volume is equivalent to that generated when the area enclosed by $x = \frac{y^3}{64} + 1$, the *y*-axis, and y = 8, is rotated through two right angles about the *y*-axis, the units being centimetres. Calculate its volume.

Solution: When
$$x = 0$$
, $y = -4$.
 $V = \frac{1}{2}\pi \int_{-4}^{8} x^{2} dy$,
 $= \frac{\pi}{2} \int_{-4}^{8} \left(\frac{y^{6}}{4096} + \frac{y^{3}}{32} + 1\right) dy$,
 $= \frac{\pi}{2} \left[\frac{y^{7}}{7 \times 4096} + \frac{y^{4}}{4 \times 32} + y\right]_{-4}^{8}$,
 $= \frac{\pi}{2} \left\{\frac{512}{7} + 32 + 8 - \left(-\frac{4}{7} + 2 - 4\right)\right\}$,
 $= \frac{405\pi}{7}$,
 $\approx 181.76 \text{ cm}^{3}$ (2 dec. pl.)

4

$$\frac{\text{SECTION} \in}{\text{Gauberrandown of the second of the sec$$

(d)) (i) a,c,b G.S. a,b,c A.S. $r = \frac{c}{a} = \frac{b}{c}$ ⇒ b-a=c-b. $b = \frac{a+c}{2}$ $c^2 = ab$ $\Rightarrow c^2 = a \left(\frac{a+c}{2}\right)$ $2c^2 = a^2 + ac$ $2c^2 - ac - a^2 = 0$ $\left(\frac{1}{a}a^{2}\right) = 2\left(\frac{c}{a}\right)^{2} - \left(\frac{c}{a}\right) - 1 = 0$ $= \frac{1 \pm \sqrt{1 - 4(2)(-1)}}{4}$ Common ratio $\frac{c}{a} = 1$ or $-\frac{1}{2}$ However only $-\frac{1}{2}$ applies $\frac{1}{r} = -\frac{1}{2}$ (ü) $= \frac{a}{1-r}$ S $= \frac{\alpha}{1 - \left(-\frac{1}{2}\right)}$ $S = \frac{2}{3}a$