

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2009

YEAR 11 ASSESSMENT TASK #1

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate booklet.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

Total Marks - 80

- Attempt questions 1 5
- All questions are of equal value.

Examiner: Ms F Nesbitt

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Question 1 (16 marks)

(a) Solve
$$|x-2| < 3$$
 and graph your answer on a number line 2

(b) Rationalise the denominator and simplify

$$\frac{3+2\sqrt{5}}{2\sqrt{5}-1}$$

(c) Differentiate and simplify:

(i)
$$\frac{x^2}{2} - 3\sqrt{x}$$

(ii)
$$\frac{6x+5}{1-3x}$$

(iii)
$$\sqrt{2x+8}$$

(d) Solve the following equation.
$$\log_2(x+4) - \log_2(x-2) = 1$$
 2

(e) A parabola has equation
$$(x-3)^2 = 8y$$
 2

Find: (i) the coordinates of its vertex

- (ii) the equation of its axis of symmetry
- (f) Find all the values of m for which the following quadratic equation 3has real roots:

$$mx^2 - 8x + m = 0.$$

2

Question 2 (16 marks) <u>Start a new booklet</u>

(a) The function f(x) is defined by the rule:

$$f(x) = 0 \text{ if } x \le 0$$

$$f(x) = 2x \text{ if } x > 0$$

- (i) Sketch the function in the Domain $-2 \le x \le 2$
- (ii) Find the area between f(x) and the x axis.

(b) For the function whose derivative is

$$\frac{dy}{dx} = x^2 (3x-1)(x-2),$$

determine the nature of the turning point at the point where x=0

(c) Solve:
$$3^{x-5} = 7$$
 correct to 2 decimal places. 2

- (d) Given that there is a root of $kx^2 20x + k = 0$ at x = 3, find the value of the other root. 3
- (e) Find, from first principles, the derivative of $x^2 3$. **3**
- (f) On a diagram, mark clearly the region for which **3**

 $y \ge -\sqrt{1-x^2}, y \ge -x \text{ and } y \le 0$ are true simultaneously.

3

Question 3 (16 marks)

Start a new booklet

(a) Find
$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 1}$$
 2

(b) If the roots of the equation
$$x^2 - 5x + 2 = 0$$
 are α and β ,

Find the values of

 $\alpha + \beta$ (i) (ii) $\alpha\beta$ (iii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

Solve: (c)

- (i) $x^2 8x + 10 = 0$
- (ii) $9^x 4(3)^x + 3 = 0$

Find the domain over which the graph of the function (d) $y = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x$ is concave up

The probability that a train will be late on any given day is $\frac{1}{5}$. (e) 2 Find the probability that, over a 3 day period, the train will be:

> (i) late each day

(ii) late at least once.

4

3

Question 4 (16 marks)

Start a new booklet

3

4

(a) The graph of y = f(x) passes through the point (3,1) and

$$\frac{dy}{dx} = 1 + \frac{3}{x^2}$$
. Find $f(x)$

- (b) For the curve $y = x^3 3x^2$ 9
 - (i) Find any stationary point(s)
 - (ii) Determine the nature of the stationary point(s)
 - (iii) Find any point(s) of inflexion
 - (iv) Sketch the curve in the domain $-1 \le x \le 3$ showing all the above features.
- (c) A parabola has equation $x = 7 + 6y y^2$
 - Find (i) the coordinates of its vertex,
 - (ii) its focal length,
 - (iii) the equation of its directrix.

Question 5 (16 marks) <u>Start a new booklet</u>

- (a) Solve $12 \times 8^{x-2} = \frac{3}{4^x}$ 2
- (b) Differentiate $\frac{1}{\sqrt{x-1}-\sqrt{x}}$ 3

You are not required to rationalise the denominator in your answer.

- (c) If α and β are the roots of $x^2 8x + 5 = 0$, **3** find a quadratic equation with roots α^2 and β^2
- (d) Find the equation of the tangent and normal to the curve 4 $y = x^3 - x^2$ at the point (2,4)
- (e) The cost of running a long distance truck is (¹/₃v² + 200) dollars per hour where v is the speed in km/h.
 (i) Show that the cost for k kilometers is

$$\frac{k}{v}\left(\frac{1}{3}v^2 + 200\right)$$
 dollars

(ii) Find the value of v which will minimise the cost.

End of the Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

(d)
$$\log_2 (x+4) - \log_2 (x-2) = 1$$

 $\log_2 \frac{x+4}{x-2} = 1$
 $\therefore \frac{x+4}{x-2} = 2$
 $\therefore x+4 = 2x-4$
 $x = 8$
(e) $(x-3)^2 = 8y = 4 \times 2y$
(i) Vertex is $(3,0)$
(ii) A_{XV} of symmetry is $x = 3$
(f) For real roots
 $A \ge 0$
 $64 - 4m^2 \ge 0$
 $64 - 4m^2 \ge 0$
 $-4 \le m \le 4$

Ð

) Area = $\frac{1}{2} \times 2 \times 4$ = $4 n^2$

b ato, dy = 0; it is positive at x = 0 and x = 0⁺ It is a harizontal point of inflescion. 2 $3^{2K-5} = 7$ $\frac{1}{2}$ $3^{K-5} = \frac{\ln 7}{\ln 2}$ $\frac{1}{2}$ $3^{K} = 6.77$ 2 Ô

(d) Product of roots = $\frac{c}{a} = \frac{K}{K} = 1$. Other root = d. : 3 d = 1 : d = = = = = :3

 $B(0) = 2c^2 - 3$ 6'60 = lim B(3(+h) - B(2) = $lin \left(\frac{x^2 + 2xh + h^2 = 3}{h = 3} - (\frac{x^2 - 3}{h}) \right)$ 3 $= \lim_{h \to 0} \left(\frac{2 \times h}{h} + \frac{h^2}{h} \right)$

- 27

YEAR I TASK 1 2009. QUESTION 3 d) $y = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x$ a) $\lim_{x \to 1} \frac{x^2 - x}{x^2 - 1}$ is concave up when y">0. $= \lim_{n \to \infty} \infty (2e-1)$ x71 (x-1)(x+1) $y^{1} = 2x^{2} - 5x - 3.$ $y^{"} = 4x - 5$ $= \lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$ where y'' > 04x - 5 > 0b) $x^2 - 5x + 2 = 0$. concave up: concave up: concave up: concave x > 5/4. $(x-\alpha)(x-\beta)=0$. i) $\alpha + \beta = -b_{\alpha} = 5$. ii) $\alpha \beta = \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha}$ iii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$ e) P(late)= = . P(late and late and late) = 結xち×ち= $= (\alpha + \beta)^{2} - 2\alpha\beta.$ $= 5^{2} - 2(2)$ = 3= 1/125. P(late at least once) $= 1 - P(not | ate \times 3)$ = 1 - (4/5)³ = <u>2</u>1 2. = 61/125. $c)(i) x^2 - 8x + 10 = 0.$ $\frac{x^2 - 8x + 10 + b = 6}{(x^2 - 4)^2 = 6}$ $x = 4 \pm 16$ $(ii) 9^{x} - 4(3^{x}) + 3 = 0$ $\frac{(3^{x})^{2} - 4(3^{x}) + 3}{(3^{x} - 3)(3^{x} - 1)} = 0$ $3^{x} = 3$ or $3^{x} = 1$ x=1 or x=0

Solutions to
$$Q(4)$$
.
 $Q(4)$
(A) $\frac{dy}{d\chi} = 1+3x^{-2}$ (3)
 $y = x - 3x^{-1} + c$
 $y = x - 3x^{-1} + c$
 $1 = 3 - 3 + c$
 $1 = 3 - 3 + c$
 $1 = 2 - 4c \Rightarrow c = -1$
 $\therefore 1 = 2 + c \Rightarrow c = -1$
 $\therefore y = x - \frac{3}{n} - 1$
(b) $y = x^{3} - 3x^{2}$
(i) $\frac{dy}{d\chi} = 3x^{2} - 6x$
 $= 3x(x-2)$
(ii) $\frac{dy}{d\chi} = 0$, When $x = 0$,
 $(y = x^{-2})$
(ii) $\frac{dy}{d\chi} = 0$, When $x = 0$,
 $(y = x^{-2})$
(iii) $\frac{dy}{d\chi} = 6x - 6$
 $f''(x) = 6x - 6$
 $f''(x) = 6x - 6$
 $f''(x) = 6 \times 0$, max
 $f''(x) = 6 \times 0$, max

$$-y^{2}+6y+7 = x$$

$$y^{2}-6y-7 = -x$$

$$(y-3)^{2}-16 = -x$$

$$(y-3)^{2} = -(k-16)$$

$$z$$

$$x = \frac{1}{4}$$

$$1$$

$$\int y$$

$$x = \frac{1}{4}$$

$$1$$

$$\chi = \frac{1}{4}$$

$$1$$

$$\chi = 16\frac{1}{4}$$

$$\chi = \frac{16\frac{1}{4}}{1}$$

$$QS. = 3 \times 2^{2} \times 2^{3n-6} = 3 \times 2^{-2n}.$$

$$2^{3n-4} = 2^{-2n}.$$

$$3 \times -4 = -2n$$

$$S_{2n-4} = -2n$$

$$S_{2n-4} = 4$$

$$x = 4$$

$$x = 4$$

$$x = 4$$

$$y^{2} \sqrt{2n-1} + \sqrt{2n}.$$

$$= \sqrt{2n-1} + \sqrt{2n}.$$

$$y = -\sqrt{2n-1} - \sqrt{2n}.$$

$$y = -\sqrt{2n-1} - \sqrt{2n}.$$

$$y = -\sqrt{2n-1} - \sqrt{2n}.$$

$$dy = -\frac{1}{2}(2n-1)^{-\frac{1}{2}} - \frac{1}{2}(2n)^{-\frac{1}{2}}.$$

$$= -\frac{1}{2\sqrt{2n-1}} - \frac{1}{2\sqrt{2n}}.$$

·~~

.

(C) Method 1. $X = \gamma c^2 = 7 \sqrt{X} = \gamma c.$ $\sqrt{X}^{2} = 8\sqrt{X} + 5 = 0.$ X+5= 8/X. $(\chi_{+S})^{2} = 64 x.$ $\chi^{2} + 10\chi + 25 = 64\chi$. x2- 54×+25=0. Method 7

$$dr_{\beta} = 8$$

$$d\beta = 5.$$

$$dr_{\beta}^{2} = (dr_{\beta})^{2} - 2d\beta.$$

$$= 64 - 10$$

$$= 54 = -\frac{b}{a}.$$

$$dr_{\beta}^{2} = (d\beta)^{2}$$

$$= 25 = \frac{b}{a}.$$

$$bet = 1$$

$$\chi^{2} - 54 - \chi + 25 = 0$$

(ii) $C = \frac{k}{3} V + ZOO k v^{-1}$ dC K - 200 Kv -2 12 - 200 Kin2 =0. V2 =600 V= I WVG. Taking the positive velocity. V= 1015 $\frac{d^2C}{dv^2} = 400 \, \mathrm{kv}^{-3}.$ at=v=1016 d'L - 400k, 70. Tuz (1056) 70. minina. " velocity that minimizes cost is 10/5/m/m