

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2009

YEAR 11 ASSESSMENT TASK

\#1

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Each question is to be returned in a separate booklet.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

Total Marks - 80

- Attempt questions 1 - 5
- All questions are of equal value.

Examiner: Ms F Nesbitt

Question 1 (16 marks)

(a) Solve $|x-2|<3$ and graph your answer on a number line
(b) Rationalise the denominator and simplify

$$
\frac{3+2 \sqrt{5}}{2 \sqrt{5}-1}
$$

(c) Differentiate and simplify:
(i)

$$
\frac{x^{2}}{2}-3 \sqrt{x}
$$

(ii)

$$
\frac{6 x+5}{1-3 x}
$$

(iii)

$$
\sqrt{2 x+8}
$$

(d) Solve the following equation. $\log _{2}(x+4)-\log _{2}(x-2)=1$
(e) A parabola has equation $(x-3)^{2}=8 y$

Find: (i) the coordinates of its vertex
(ii) the equation of its axis of symmetry
(f) Find all the values of m for which the following quadratic equation has real roots:

$$
m x^{2}-8 x+m=0 .
$$

Question 2 (16 marks) Start a new booklet

(a) The function $f(x)$ is defined by the rule:

$$
\begin{aligned}
& f(x)=0 \text { if } x \leq 0 \\
& f(x)=2 x \text { if } x>0
\end{aligned}
$$

(i) Sketch the function in the Domain $-2 \leq x \leq 2$
(ii) Find the area between $f(x)$ and the x axis.
(b) For the function whose derivative is
$\frac{d y}{d x}=x^{2}(3 x-1)(x-2)$,
determine the nature of the turning point at the point where $x=0$
(c) Solve: $3^{x-5}=7$ correct to 2 decimal places.
(d) Given that there is a root of $k x^{2}-20 x+k=0$ at $x=3$, find the value of the other root.
(e) Find, from first principles, the derivative of $x^{2}-3$.
(f) On a diagram, mark clearly the region for which

$$
y \geq-\sqrt{1-x^{2}}, y \geq-x \text { and } \mathrm{y} \leq 0 \text { are true simultaneously. }
$$

Question 3 (16 marks)

Start a new booklet

(a) Find $\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}$
(b) If the roots of the equation $x^{2}-5 x+2=0$ are α and β,

Find the values of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
(c) Solve:
(i) $x^{2}-8 x+10=0$
(ii) $9^{x}-4(3)^{x}+3=0$
(d) Find the domain over which the graph of the function
$y=\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-3 x$ is concave up
(e) The probability that a train will be late on any given day is $\frac{1}{5}$. Find the probability that, over a 3 day period, the train will be:
(i) late each day
(ii) late at least once.

Question 4 (16 marks)

Start a new booklet

(a) The graph of $y=f(x)$ passes through the point $(3,1)$ and

$$
\frac{d y}{d x}=1+\frac{3}{x^{2}} . \quad \text { Find } \quad f(x)
$$

(b) For the curve $y=x^{3}-3 x^{2}$
(i) Find any stationary point(s)
(ii) Determine the nature of the stationary point(s)
(iii) Find any point(s) of inflexion
(iv) Sketch the curve in the domain $-1 \leq x \leq 3$ showing all the above features.
(c) A parabola has equation $x=7+6 y-y^{2}$

Find (i) the coordinates of its vertex,
(ii) its focal length,
(iii) the equation of its directrix.

Question 5 (16 marks) Start a new booklet

(a) Solve $12 \times 8^{x-2}=\frac{3}{4^{x}}$
(b) Differentiate $\frac{1}{\sqrt{x-1}-\sqrt{x}}$

You are not required to rationalise the denominator in your answer.
(c) If α and β are the roots of $x^{2}-8 x+5=0$, find a quadratic equation with roots α^{2} and β^{2}
(d) Find the equation of the tangent and normal to the curve

$$
y=x^{3}-x^{2} \text { at the point }(2,4)
$$

(e) The cost of running a long distance truck is
$\left(\frac{1}{3} v^{2}+200\right)$ dollars per hour where v is the speed in km / h.
(i) Show that the cost for k kilometers is

$$
\frac{k}{v}\left(\frac{1}{3} v^{2}+200\right) \text { dollars. }
$$

(ii) Find the value of v which will minimise the cost.

End of the Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Q1 (a) $|x-2|<3$

$$
\begin{aligned}
& \therefore-3<x-2<3 \\
& \therefore-1<x<5
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{3+2 \sqrt{5}}{2 \sqrt{5}-1} \times \frac{2 \sqrt{5}+1}{2 \sqrt{5}+1} \\
= & \frac{6 \sqrt{5}+3+20+2 \sqrt{5}}{20-1} \\
= & \frac{23+8 \sqrt{5}}{19}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
& \frac{d}{d x}\left(\frac{x^{2}}{2}-3 \sqrt{x}\right) \\
= & x-\frac{3}{2} x^{-\frac{1}{2}} \\
= & x-\frac{3}{2 \sqrt{x}}
\end{aligned} \text { = }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{6 x+5}{1-3 x}\right) \\
= & \frac{(1-3 x) \cdot 6-(6 x+5) \times-3}{(1-3 x)^{2}} \\
= & \frac{6-18 x+18 x+15}{(1-3 x)^{2}} \\
= & \frac{21}{(1-3 x)^{2}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{d}{d x}(\sqrt{2 x+5}) \\
= & \frac{1}{2}(2 x+8)^{-\frac{1}{2}} \cdot 2 \\
= & \frac{1}{\sqrt{2 x+8}}
\end{aligned}
$$

(d)

$$
\begin{gathered}
\log _{2}(x+4)-\log _{2}(x-2)=1 \\
\log _{2} \frac{x+4}{x-2}=1 \\
\therefore \frac{x+4}{x-2}=2 \\
\therefore x+4=2 x-4 \\
x=8
\end{gathered}
$$

(e) $(x-3)^{2}=8 y=4 \times 2 y$
(i) Vertex is $(3,0)$

(ii) Axir of symmoty is $x=3<1\rangle$
(f) Fur real roits.

$$
\begin{gathered}
\Delta \geqslant 0 \\
64-4 \times m \times m \geqslant 0 \\
64-4 m^{2} \geqslant 0 \\
\therefore-4 m^{2} \leq 64 \\
m^{2} \leq 16 \\
\therefore-4 \leq m \leq 4
\end{gathered}
$$

2 (a)
(i)

(ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 2 \times 4 \\
& =4 a^{2}
\end{aligned}
$$

(b) ato, $\frac{d y}{d x}=0$; it is positine at $x=0^{-}$and $x=0^{+}$ It is a harizontad paint of inflescion.
(c) $\quad 3^{x-5}=7 \quad \therefore \quad x-5=\frac{\ln 7}{\ln 3} \quad \therefore x=6.77 \quad 2$
(d) Proskint of roots $=\frac{c}{a}=\frac{k}{k}=1$. other roat $=\alpha$.

$$
\therefore \quad 3 \alpha=1 \quad \therefore \quad \alpha=\frac{1}{3}
$$

3
(2)

$$
\begin{aligned}
f(x) & =x^{2}-3 \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{x^{2}+2 x h+h^{2}-3-\left(x^{2}-3\right)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{2 x h}{h}+\frac{h^{2}}{h}\right) \\
& =2 x
\end{aligned}
$$

(E)

YEAR II TASK 12009
QUESTION 3
a).

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{x(x-1)}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{x}{x+1}=\frac{1}{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{2}-5 x+2=0 \\
& (x-\alpha)(x-\beta)=0
\end{aligned}
$$

i) $\alpha+\beta=-b / a=5$
ii) $\alpha \beta=c / a=2$
iii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$.

$$
\begin{aligned}
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{5^{2}-2(2)}{2} \\
& =\frac{21}{2}
\end{aligned}
$$

c) (i)

$$
\begin{array}{r}
x^{2}-8 x+10=0 \\
x^{2}-8 x+10+6=6 \\
(x-4)^{2}=6 \\
x=4 \pm \sqrt{6}
\end{array}
$$

(ii)

$$
\begin{aligned}
& \text { i) } \begin{array}{l}
9^{x}-4\left(3^{x}\right)+3=0 \\
\left(3^{x}\right)^{2}-4\left(3^{x}\right)+3=0 \\
\left(3^{x}-3\right)\left(3^{x}-1\right)=0 \\
3^{x}=3 \text { or } 3^{x}=1 \\
x=1 \text { or } x=0
\end{array} .
\end{aligned}
$$

d) $y=\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-3 x$
is concave up when $y^{\prime \prime}>0$

$$
\begin{aligned}
& y^{\prime}=2 x^{2}-5 x-3 \\
& y^{\prime \prime}=4 x-5
\end{aligned}
$$

where $y^{\prime \prime}>0$

$$
4 x-5>0
$$

$$
x>5 / 4 .
$$

concave up is $x \in \mathbb{R}: x>5 / 4$
e) $P($ late $)=\frac{1}{5}$.
$P($ Late and late and late)

$$
\begin{aligned}
& =\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}= \\
& =1 / 125 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { P(late at least once) } \\
& =1-P(\text { not late } \times 3) \\
& =1-(4 / 5)^{3} \\
& =61 / 125 .
\end{aligned}
$$

Soluttions to $Q(4)$.
Q (4)
(a)

$$
\begin{aligned}
& \frac{d y}{d x}=1+3 x^{-2} \\
& y=x-3 x^{-1}+c
\end{aligned}
$$

When $x=3, y=1^{2}$

$$
\begin{aligned}
& 1=3-\frac{3}{3}+c \\
& \therefore 1=2+c \Rightarrow c=-1 \\
& \therefore y=x-\frac{3}{x}-1
\end{aligned}
$$

(b) $\quad y=x^{3}-3 x^{2}$
(i) $\frac{d y}{d x}=3 x^{2}-6 x$

$$
=3 x(x-2)
$$

(ii) $\frac{d y}{d x}=0$, when $x=0$, $(0,0)(2,4), 3$.

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-6 \\
& f^{\prime \prime}(0)=-6,<0, \max \\
& f^{\prime \prime}(2)=6>0, \max
\end{aligned}
$$

(iii)

$$
f^{\prime \prime}(x)=0
$$

$$
x=1, \quad y=-2 .
$$

x	01	1	2
$f^{\prime \prime}(x)$	-3	0	6

$\therefore(1,-2)$ is apt
of inflexion

$$
\begin{align*}
& -y^{2}+6 y+7=x \\
& y^{2}-6 y-7=-x \tag{4}\\
& (y-3)^{2}-16=-x \\
& (y-3)^{2}=-(x-16)
\end{align*}
$$

\therefore Vertex $(16,3)$.

$$
a=\frac{1}{4}
$$

$$
\begin{aligned}
& x=16 \frac{1}{4} \\
& x=\frac{65}{4}
\end{aligned}
$$

Q5.
(a)

$$
\begin{aligned}
3 \times 2^{2} \times 2^{3 x-6} & =3 \times 2^{-2 x} \\
2^{3 x-4} & =2^{-2 x} \\
3 x-4 & =-2 x \\
5 x & =4 \\
x & =\frac{4}{5} .
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
y & =\frac{1}{\sqrt{x-1}-\sqrt{x}} \times \frac{\sqrt{x-1}+\sqrt{x}}{\sqrt{x-1}+\sqrt{x}} \\
& =\frac{\sqrt{x-1}+\sqrt{x}}{x-1-x} \\
y & =-\sqrt{x-1}-\sqrt{x} . \\
\frac{d y}{d x} & =-\frac{1}{2}(x-1)^{-\frac{1}{2}}-\frac{1}{2}(x)^{-\frac{1}{2}} \\
& =-\frac{1}{2 \sqrt{x-1}}-\frac{1}{2 \sqrt{x} .}
\end{aligned}
$$

(C) Method 1 .

$$
\begin{aligned}
& x=x^{2} \Rightarrow \sqrt{x}=x \\
& \sqrt{x}-8 \sqrt{x}+5=0 \\
& x+5=8 \sqrt{x} \\
& (x+3)^{2}=64 x \\
& x^{2}+10 x+23=64 x \\
& x^{2}-54 x+25=0
\end{aligned}
$$

Method 2.

$$
\begin{aligned}
\alpha+\beta & =8 \\
\alpha \beta & =5 . \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta . \\
& =64-10 \\
& =54=-\frac{b}{a} . \\
\alpha^{2} \beta^{2} & =(\alpha \beta)^{2} \\
& =25=\frac{c}{a} .
\end{aligned}
$$

let $a=1$

$$
x^{2}-54 x+25=0
$$

(ii)

$$
\begin{aligned}
& c=\frac{k}{3} v+200 k v^{-1} \\
& d C \\
& d v=\frac{k}{3}-200 k v^{-2} \\
& \frac{k}{3}-200 k v^{-2}=0 \\
& v^{2}=600 \\
& v= \pm 10 \sqrt{6}
\end{aligned}
$$

Taking the positive velocity.

$$
\begin{aligned}
v & =10 \sqrt{6} \\
\frac{d^{2} c}{d u^{2}} & \approx 400 k^{-3} \\
a t & =v=10 \sqrt{6} \\
\frac{d^{2} c}{d v^{2}} & =\frac{400 k}{(10 \sqrt{6})^{3}}>0
\end{aligned}
$$

minima.

- velocity thant minimises cost is $10 \sqrt{6} \mathrm{~km} / \mathrm{hr}$.

