## SYDNEY BOYS HIGH SCHOOL <br> MOORE PARK, SURRY HILLS

November 2010
Assessment Task 1
Year 11

## Mathematics

## General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question if full marks are to be awarded.
- All answers to be given in simplified exact form unless otherwise stated.
- Marks may not be awarded for messy or badly arranged work


## Total Marks - 80

- Attempt questions 1-5
- Start each new question in a separate answer booklet.
- Hand in your answers in 5 separate bundles:

Question 1,
Question 2,
Question 3,
Question 4 and
Question 5

Examiner: A Ward

## Start a new booklet.

## Question 1 (16 marks).

Marks
d) State whether or not $\{(1,2),(2,4),(1,5)\}$ is a function.
e) Without solving the equation $2 x^{2}-x-3=0$, determine and justify whether the roots are:
(i) Real or non-real.
(ii) Equal or distinct.
(iii)Rational or irrational.
f) Determine whether the following functions are odd, even or neither:
(i) $f(x)=x^{3}+3 x^{2}+7 x$
(ii) $f(x)=\frac{2}{x^{3}}$
(iii) $f(x)=\frac{1}{x^{5}+x^{3}}$
g) If the equation $x^{2}+3 p x+p$, where $p$ is a non-zero constant, has equal roots; find the value of $p$.
h) The probabilities that Albert, Byron and Charlie will pass an examination are
$\frac{1}{2}, \frac{2}{3}$ and $\frac{3}{4}$ respectively. What is the probability that Albert and Charlie will pass and Byron will fail?
i) Simplify first and find the value of $x$ : $\log _{10} 5+2 \log _{10} 8-\frac{1}{2} \log _{10} 16=\log _{10} x$

## End of Question 1

## Start a new booklet.

## Question 2 (16 Marks).

## Marks

a) A factory produces components of which $0.6 \%$ are defective. The components are packed in boxes of 10. A box is selected at random. Find the probability that the box contains exactly 2 defective components.
b) Differentiate the following with respect to $x$ :
(i) $x^{5}-4 x^{4}+2 x^{2}-7$
(ii) $(3 x+2)^{7}$
(iii) $x\left(2 x^{3}-13\right)$
(iv) $\frac{8 x^{2}+6}{x-1} ; x \neq 1$
c) Find the equation of the tangent to the curve $y=x^{2}+2 x$, that is parallel to the line $y=4 x+1$.
d) A parabola has vertex $(-2,-3)$ and directrix $y=-1$. Find the:
(i) focal length
(ii) focus
(iii)axis of symmetry
(iv)equation of the parabola

## End of Question 2

## Start a new booklet.

## Question 3 (16 marks).

## Marks

a) Find the $\lim _{x \rightarrow 2} \frac{2 x^{2}-8}{x-2}$
b) Find to 3 significant figures the value of $x$ for which $5^{x}=7$
c) Sketch the regions satisfying the simultaneous inequations such that:

$$
\left\{(x, y): y \geq x^{2}\right\} \cap\{(x, y: x+y<3)\}
$$

d) Find $A, B$ and $C$ if $A(x-1)^{2}+B(x-1)+C \equiv 3 x^{2}+5 x+8$
e) Differentiate the following from first principles:

$$
f(x)=3 x^{2}-2 x
$$

f) Given that $y=x^{2}+5 x-3$ and $9 x-y-7=0$.
(i) Find any points of intersection.
(ii) Prove that $9 x-y-7=0$ is a tangent to $y=x^{2}+5 x-3$

## End of Question 3

## Start a new booklet.

## Question 4 (16 marks).

a) Solve: $9 \times 3^{x-1}=\frac{1}{27}$
b) Find the exact solution to the equations:
(i) $\ln (3 x-7)=5$
(ii) $3^{x} e^{7 x+2}=15$
c) The functions $f$ and $g$ are defined by:

$$
\begin{aligned}
& f(x)=e^{2 x}+3 \\
& g(x)=\ln (x-1)
\end{aligned}
$$

Find $f[g(x)]$ and state its range.
d) Bag A contains 2 black and 5 white balls. Bag B contains 4 black and 6 white
balls. One bag is selected at random and 2 balls taken from it, without replacement. What is the probability that one ball is black and one ball is white?
e) (i) Show that the locus of the point P , which moves so that its distance from $\mathrm{A}(1,2)$ is always three times its distance from $\mathrm{B}(5,6)$, is a circle.
(ii) State its centre and radius.

## End of Question 4

## Start a new booklet.

## Question 5 (16 marks).

a) Sketch the derivative of $y=|x|$.
b) The curve $C$ has the equation:

$$
y=x^{2}(x-6)+\frac{4}{x} ; x>0 .
$$

The points P and Q lie on $C$ and have $x$ co-ordinates 1 and 2 respectively.
(i) Show that the length of $P Q$ is $\sqrt{170}$.
(ii) Show that the tangents to $C$ at $P$ and $Q$ represent the same line.
(iii)Find an equation of the normal to $C$ at $P$ giving your answer in general form.
c) If a car dealership sets the price of their cars at $\$ 28000$, they will sell 54 cars. Every time they drop the price $\$ 1000$, 2 more cars will be sold. What should the price of their cars be set at to maximise income?

## End of Question 5. <br> End of Examination.

Solutions Nov 2 ll YRII Assess Task !
(1) (a)

$$
\begin{align*}
& 86=3 \times 27+7 \quad \text { No! } \\
& 86=88 \tag{1}
\end{align*}
$$

(b) $1 /$
(d)
(c) $5^{x}=625$
(b)

$$
\begin{align*}
a & =2, b=-1, c=-3  \tag{1}\\
\Delta & =(-1)^{2}-4 \times 2 \times-3 \\
& =1+24 \\
& =25^{\circ} \tag{1}
\end{align*}
$$

(i) real
(ii) destinct (1)
(iii) rational (i)
(f)

$$
\text { (ii) } \begin{align*}
f(-x) & =(-x)^{3}+3(-x)^{2}+7(-x) \\
& =-x^{3}+3 x^{2}-7 x \\
& =-\left(x^{3}-3 x^{2}+7 x\right) \tag{1}
\end{align*}
$$

$\neq f(x)$, no odd. or even.
or $\neq-f(x)$ neither.
(ii) $f(-x)=\frac{2}{(-x)^{3}}=\frac{2}{-x^{3}}=-\frac{2}{x^{3}}$.

So not ever $\neq f(x)$ but $f(-x)=-f(x)$ odd (1)
(iii)

$$
\begin{aligned}
& f(\bar{x})=\frac{1}{(-x)^{5}+(-x)^{3}}=\frac{1}{-x^{5}-x^{3}}=\frac{-1}{x^{5}+x^{3}} \neq f(x) \\
&=-f(x) \\
& \text { noteven } \\
& \text { ndid. (1) }
\end{aligned}
$$

(9) $x^{2}+3 p x+p$
has equal roots.

$$
\begin{array}{lr}
a=1 & \Delta=b^{2}-4 a c=0 \\
b=3 p & 9 p^{2}-4 x 1 \times p=0 \\
c=p & 9 p^{2}-4 p=0 \\
& p(9 p-4)=0 \\
& p=0 \text { or } p=\frac{4}{9}
\end{array}
$$

but $p \neq 0$ deata so $p=\frac{4}{9}$
(h) $P($ Albert pass, Charlie pass, Byro-fail)

$$
\begin{align*}
& =\frac{1}{2} \times \frac{1}{36} \times \frac{6}{4} \\
& =\frac{1}{8} \tag{2}
\end{align*}
$$

(i) $\log _{5} 5+2 \log _{2} 8-\frac{1}{2} \log 16=\log x$.

LHS

$$
\begin{align*}
& \log 5+2 \log 8^{2}-\log 16^{\frac{1}{2}} \\
& \log 5+\log 64-\log 4 \\
& \log \left(\frac{5 \times 64}{4}\right)  \tag{2}\\
& \log 80=\log x \quad x=80
\end{align*}
$$

ZUNIT SOLUTIONS

QUESTION 2
a) Defective 0.006

Non -Defective 0.994
$\square \square \square \square \square \square \square \square \square \square$
2 Defective means 8 Non-Defective.
i. $0.006 \times 0.006 \times(0.994)^{8}$

Also, how many different positions can defective ones be arranged, amongst the ten in the box

i.. $9+8+7+6+5+4+3+2+1=45$

$$
\begin{aligned}
\therefore P(E) & =45 \times 0.006 \times 0.006 \times(0.994)^{8} \\
& = \\
& {\left[O R{ }^{10} C_{2} \times 0.006^{2} \times 0.094^{8}\right] }
\end{aligned}
$$

b) (i) $5 x^{4}-16 x^{3}+4 x$
(ii) $21(3 x+2)^{6}$
(ii)

$$
\begin{aligned}
& 2 x^{3}-13+x .6 x^{2} \\
= & 2 x^{3}-13+6 x^{3} \\
= & 8 x^{3}-13
\end{aligned}
$$

(iv)

Marking scale.
a)

$$
\begin{array}{ll}
0.006 \times 0.006 & 1 \text { mark. } \\
0.06 \times 0.06 & \frac{1}{2} \text { mark } \\
0 R \text { the like } & \\
0.006^{2} \times 0.994^{8} & 1 \frac{1}{2} \text { marks } \\
(0.994)^{8} & 1 \text { mark }
\end{array}
$$

b) (i) I mark (no half marks)
(ii) $1 \operatorname{mark}$ ( $\quad 1 \quad "$ ) $7(3 x+2)^{0} .3$ is ok.
(iii) One part of product rule correct - I mark (no half marls)
(iv) One error - I mark. (no half marks)
c)

$$
\left.\begin{array}{r}
2 x+2=4 \\
\text { or } y^{\prime}=2 x+2
\end{array}\right\} \text { I mark }
$$

Point ( 1,3 ) I mark
Equin $y=4 x-1 \quad$ I mark.
(No half marks)
d) a) $a=-2 \quad \frac{1}{2}$ mark.
(ii) no halfmarks.
(iii) -2 $\frac{i}{2}$ mark

$$
y=-2 \quad \frac{1}{2} \text { mark. }
$$

(iv) Leaving out the i-'sign

- (minus 1 mark)

Using focus instead of vertex - (minus I mark)

123334 , Solution to Question (3)
(a) $\lim _{x \rightarrow 2} \frac{2(x+2)(x / 2)}{(x \not-2)}$
$[1]=8$. 米
(b) $5^{x}=7$

$[2] \quad x=1.21$
(c)

(d)

$$
\begin{aligned}
& A(x-1)^{2}+B(x-1)+C \\
& \equiv 3 x^{2}+5 x+8 \\
& x=1, C=16
\end{aligned}
$$

Loegs of $x^{2} A=3$.

$$
x=0
$$

$$
8=A-B+C[3]
$$

$$
8=3-B+16
$$

$$
\therefore \quad-B=-11
$$

$$
\therefore B=11
$$

$$
\text { (e) } \begin{aligned}
& f(x+h) \\
= & 3(x+h)^{2}-2(x+h) \\
= & 3\left[x^{2}+2 x h+h^{2}\right] \\
& -2 x-2 h \\
= & 3 x^{2}+6 x h+3 h^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\frac{6 x h+3 h^{2}-2 h}{h} \\
& \lim _{h \rightarrow 0}=6 x-2 \cdot[3] . \\
& \text { (f). } 9 x-7=x^{2}+5 x-3 \\
& x^{2}-4 x+4=0 \\
& (x-2)^{2}=0 \\
& \therefore x=2 . y=11
\end{aligned}
$$

$(2,11)$ is $p+$ of intersection.

$$
x^{2}-4 x+4=0
$$

(ii)

$$
\Delta=0
$$

$$
\therefore \quad y=9 x-7
$$

is a tgt. to

$$
y=x^{2}+5 x-3
$$

since 7 ouly a solntion

QUESTION 4
(a)

$$
\begin{aligned}
3^{2} \times 3^{x-1} & =3^{-3} \\
x+1 & =-3 \\
x & =-4
\end{aligned}
$$

(b)

$$
\text { (1) } \begin{aligned}
3 x-7 & =e^{5} \\
x & =\frac{1}{3}\left(e^{5}+7\right) .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \ln \left(3^{x} e^{7 x+2}\right)=\ln 15 \\
& \ln 3^{x}+\ln e^{7 x+2}=\ln 15 \\
& x \log _{3} 3^{2}+7 x+2=\log e \\
& x\left(\log e^{3}+7\right)=\ln 15-2 \\
& x=\frac{\ln 15-2}{\ln 3+7}
\end{aligned}
$$

c)

$$
\begin{aligned}
g(x) & =\ln (x-1) \\
f[g(x)] & =e^{2 \ln (x-1)}+3 \\
& =e^{\log _{e}(x-1)^{2}}+3
\end{aligned}
$$



Doman all real $x$. Rasge. $y>3$.

(A)


$$
\frac{1\left(\frac{2}{7} \times \frac{5^{16}}{6}+\frac{5}{7} \times \frac{2}{6}\right) \frac{1}{2}\left(\frac{4}{10} \times \frac{6}{9}+\frac{6}{10} \times \frac{4}{9}\right)}{\frac{5}{21}+\frac{4}{15} \frac{53}{105}} \begin{aligned}
& \frac{1}{2} \times \frac{{ }^{2} C_{1} \times C_{1}^{5}}{{ }^{5} C_{2}}+\frac{1}{2} \times \frac{{ }^{4} C_{1} \times{ }^{6} C_{1}}{10 C_{2}}
\end{aligned}
$$

$$
=\frac{53}{105}
$$

(e) $\sqrt{(x-1)^{2}+(y-2)^{2}}=3 \cdot \sqrt{(x-5)^{2}+(y-6)^{2}}$
$x^{2}-2 x+1+y^{2}-4 x+4$ $=9 x^{2}-90 x+225+9 y^{2}-108 y+324$ $8 x^{2}-88 x+8 y^{2}-104 y+544=0$ $x^{2}-11 x+\left(\frac{11}{2}\right)^{2}+y^{2}-13 y+\left(\frac{13}{2}\right)^{\frac{1}{2}}=-68+72^{\frac{1}{2}}$ $\left(x-\frac{11}{2}\right)^{2}+\left(y-\frac{13}{2}\right)^{2}=\frac{9}{2}$
curcle $C\left(\frac{11}{2}, \frac{12}{2}\right)$ r $\frac{3 \sqrt{2}}{2}$

Q5. 11 math
5.
(a) $y=|x|$


(b) $\quad y=x^{2}(x-6)+\frac{4}{x} ; x>0$ $P, Q$ lie on curve

$$
Q\left(2, \bar{J}_{q}\right)
$$

(i) Show $\overline{P Q}=\sqrt{170}$.

When $\bar{x}=1, y=\Gamma(-5)+\frac{4}{1}=-1$

$$
\Rightarrow p(1,-1)
$$

When $x=2, y=4(-4)+\frac{4}{2}=-14$
(ii)

Point $\left.y^{\prime}(1)=1+3 x^{2}-12 x^{2}-10-4=-13\right]$
$\operatorname{Poght} x^{2}(2)=4-16-1=-13$

$$
\left.\frac{\operatorname{lont} p}{\operatorname{Pon} t} y^{\prime}(1)=1+-10-4=-13\right]
$$

(ii) (cont) Then prof argent at $P(1,-1) \quad m=-13$
is

$$
\begin{align*}
y+1 & =-13(x-1) \\
y+1 & =-13 x+13 \\
y & =-13 x+12 \tag{i}
\end{align*}
$$

Egnof tangent at $Q(2,-14)$ and $m=-13$

$$
\begin{aligned}
y+4 & =-13(x-2) \\
& =-13 x+26 \\
& =-13 x+12 \\
m_{1}=m_{2} \text { i. parallel } & \text { same line }
\end{aligned}
$$

(iii) Normal at $P \Rightarrow m=\frac{1}{13}$

$$
\begin{aligned}
& y+1=\frac{1}{13}(x-1) \\
& 13 y+13=x-1 \\
& -x+13 y+14=0
\end{aligned}
$$

(c)

| Price | $n$ (no sold) |
| ---: | :--- |
| 28000 | 54 |
| $28000-1000$ | $54+25$ |
| $28000-2 \times 1000$ | $54+2 \times 2$. |

$x=$ no of $\$ 1000$ reductions
Income $=$ Price $\times n$

$$
I=(28000-1000 x)(54+2 \dot{x})
$$

$$
\begin{aligned}
& I=1512000+56000 x-54000 x \\
& \quad-2000 x^{2} \\
& I=1512000+2000 x-2000 x^{2} \\
& I^{\prime}=2000-4000 x
\end{aligned}
$$

Forty's $I^{\prime}=0 \Rightarrow-4000 x=-2000$ $x=\frac{1}{2}$

$$
I^{\prime \prime}=-4000 \Rightarrow \max _{x=\frac{1}{2}} \text { at }
$$

or T.P. at $x=\frac{-b}{2 a}$,..(quadratic)

$$
=\frac{-2000}{=4090}
$$

$$
x=\frac{1}{2}
$$

$$
\text { When } x=\frac{1}{2}, I=\$ 1513500 \text {. }
$$

$\therefore$ max ,

$\therefore$ Price should be set at

$$
\begin{aligned}
& \$ 28000-1000 \times \frac{7}{2} \\
= & \$ 27500 .
\end{aligned}
$$

