

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

November 2010 Assessment Task 1 Year 11

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question if full marks are to be awarded.
- All answers to be given in simplified exact form unless otherwise stated.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 80

- Attempt questions 1-5
- Start each new question in a separate answer booklet.
- Hand in your answers in 5 separate bundles:

Question 1, Question 2, Question 3, Question 4 and Question 5

A Ward

Examiner:

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Start a new booklet.

Question 1 (16 marks). Marks a) Determine whether the line y = 3x + 7 passes through the point (27, 86). 1 What is the coefficient of $11x^4$? b) 1 c) Rewrite $\log_5 625 = x$ in exponential form (but do not solve for *x*). 1 **d**) State whether or not $\{(1,2), (2,4), (1,5)\}$ is a function. 1 Without solving the equation $2x^2 - x - 3 = 0$, determine and justify whether 3 e) the roots are: (i) Real or non-real. (ii) Equal or distinct. (iii)Rational or irrational. Determine whether the following functions are odd, even or neither: 3 **f**) (i) $f(x) = x^3 + 3x^2 + 7x$ (ii) $f(x) = \frac{2}{x^3}$ (iii) $f(x) = \frac{1}{x^5 + x^3}$ 2 g) If the equation $x^2 + 3px + p$, where p is a non-zero constant, has equal roots; find the value of *p*. h) The probabilities that Albert, Byron and Charlie will pass an examination are 2 $\frac{1}{2}, \frac{2}{3}$ and $\frac{3}{4}$ respectively. What is the probability that Albert and Charlie will pass and Byron will fail? 2 **i**) Simplify first and find the value of *x*:

$$\log_{10} 5 + 2\log_{10} 8 - \frac{1}{2}\log_{10} 16 = \log_{10} x$$

Start a new booklet.

Question 2 (16 Marks).

Marks

a)	A factory produces components of which 0.6% are defective. The	2
	components are packed in boxes of 10. A box is selected at random. Find the	
	probability that the box contains exactly 2 defective components.	
b)	Differentiate the following with respect to <i>x</i> :	6
	(i) $x^5 - 4x^4 + 2x^2 - 7$	
	(ii) $(3x+2)^7$	
	(iii) $x(2x^3-13)$	
	$(iv) \frac{8x^2 + 6}{x - 1}; x \neq 1$	
c)	Find the equation of the tangent to the curve $y = x^2 + 2x$, that is parallel to	3
	the line $y = 4x + 1$.	
d)	A parabola has vertex (-2,-3) and directrix $y = -1$. Find the:	5
ŗ	(i) focal length	
	(ii) focus	
	(iii)axis of symmetry	
	(iv)equation of the parabola	

Marks

Start a new booklet.

Question 3 (16 marks).

a) Find the
$$\lim_{x \to 2} \frac{2x^2 - 8}{x - 2}$$
 1

b) Find to 3 significant figures the value of x for which
$$5^x = 7$$
 2

c) Sketch the regions satisfying the simultaneous inequations such that: $\{(x, y) : y \ge x^2\} \cap \{(x, y : x + y < 3)\}$

d) Find A, B and C if
$$A(x-1)^2 + B(x-1) + C \equiv 3x^2 + 5x + 8$$
 3

e) Differentiate the following from first principles: 3

$$f(x) = 3x^2 - 2x$$

f) Given that
$$y = x^2 + 5x - 3$$
 and $9x - y - 7 = 0$.

- (i) Find any points of intersection.
- (ii) Prove that 9x y 7 = 0 is a tangent to $y = x^2 + 5x 3$

Marks

4

3

Start a new booklet.

Question 4 (16 marks).

a)	Solve: $9 \times 3^{x-1} = \frac{1}{x-1}$	2
	27	

- **b**) Find the exact solution to the equations:
 - (i) $\ln(3x-7) = 5$ (ii) $3^{x}e^{7x+2} = 15$
- c) The functions *f* and *g* are defined by:

$f(x) = e^{2x} + 3$ $g(x) = \ln(x-1)$

Find f[g(x)] and state its range.

- d) Bag A contains 2 black and 5 white balls. Bag B contains 4 black and 6 white
 3 balls. One bag is selected at random and 2 balls taken from it, without
 replacement. What is the probability that one ball is black and one ball is
 white?
- e) (i) Show that the locus of the point P, which moves so that its distance
 from A(1,2) is always three times its distance from B(5,6), is a circle.
 - (ii) State its centre and radius.

Start a new booklet.

Question 5 (16 marks).

- **a**) Sketch the derivative of y = |x|
- **b**) The curve *C* has the equation:

$$y = x^2 (x-6) + \frac{4}{x}; x > 0.$$

The points P and Q lie on C and have x co-ordinates 1 and 2 respectively.

- (i) Show that the length of PQ is $\sqrt{170}$.
- (ii) Show that the tangents to C at P and Q represent the same line.
- (iii)Find an equation of the normal to *C* at *P* giving your answer in general form.
- c) If a car dealership sets the price of their cars at \$28000, they will sell 54 cars. Every time they drop the price \$1000, 2 more cars will be sold. What should the price of their cars be set at to maximise income?

End of Question 5. End of Examination.

Marks

2

9

5

Solutions Nov 211 MRII Assess Task 1.1. (a) 86=3×27+7 NO. (86 = 88 $(d) | < \frac{2}{5}$ 01 (6) 11 (1) 2-4 (c) $5^{\alpha} = 625$ (d) (B) a=2, b=-1, c=-3NO $\Delta = (-1)^2 - 4 \times 2 \times -3$ = 1+24 = 25 ()(1) real (ii) distinct (iii) rational ($(f) (i) f(-x) = (-x)^{3} + 3(-x)^{2} + 7(-x)$ $= -\chi^3 + 3\chi^2 - 7\chi$ $= -(\chi^3 - 3\chi^2 + 7\chi)$ $\neq F(x)$, no odd. or even. _ (*i*) neither $Dr' \neq -f(x)$ (11) $F(-x) = \frac{2}{(-x)^3} = \frac{2}{-x^3} = -\frac{2}{x^3}$. So not even $\neq \overline{f}(x)$ but $f(-x) = -\tilde{f}(x)$ odd O+ T(x) + That feller $(111) \overline{f}(\overline{x}) = \frac{1}{(-x)^{5} + (-x)^{3}} = \frac{1}{-x^{5} - x^{3}} = \frac{1}{-x^{5} - x^{3}}$

(9)
$$x^2 + 3px + p$$

has equal roots.
 $a = 1$
 $b = 3p$
 $c = p$
 $p^2 - 4x | x p = 0$
 $qp^2 - 4p = 0$
 $p(qp - 4) = 0$
 $p = 0 \text{ or } p = \frac{4}{9}$
 $but p \neq 0 \text{ data so} p = \frac{4}{9}$
(1)
 $p(Albert pass, Charlie pass, Byron Fail)$
 $= \frac{1}{8} \times \frac{1}{8} \times \frac{1}{4}$

ľ {

2

(i)
$$\log 5 + 2\log 8 - \frac{1}{2}\log 16 = \log x$$
.
LNS $\log 5 + \log 8^2 - \log 16^2$
 $\log 5 + \log 64 - \log 4$
 $\log (\frac{5 \times 64}{4})$
 $\log 80 = \log x$ $x = 80$

2UNIT SOLUTIONS

QUESTION 2

4 . k

- a) Defective 0:006 Non-Defective 0:994 DDDDDDDDD 2 Defective means 8 Non-Defective. ie. 0:006 × 0:006 × (0:994)⁸
 - Also, how many different positions can defective ones be arranged, amongst the ten in the box

- 18. 9+8+7+6+5+4+3+2+1=45
- $P(E) = 45 \times 0.006 \times 0.006 \times (0.994)^{8}$ $= \begin{bmatrix} 0R & (2 \times 0.006^{2} \times 0.994)^{8} \end{bmatrix}$ b) (i) $5x^{4} 16x^{3} + 4x$ ii) $21(3x+2)^{6}$ iii) $2x^{3} 13 + x \cdot 6x^{2}$ $= 2x^{3} 13 + 6x^{3}$ $= [8x^{3} 13]$

(iv)
$$\frac{(x-1) \cdot 16x - (8x^{2}+6)}{(x-1)^{2}}$$

= $\frac{16x^{2} - 16x - 8x^{2} - 6}{(x-1)^{2}}$
= $\frac{8x^{2} - 16x - 6}{(x-1)^{2}}$
= $2(\frac{4x^{2} - 8x - 3}{(x-1)^{2}})$
c) $y = x^{2} + 2x$
 $\frac{dy}{dx} = 2x + 2$
 $\therefore \quad 2x + 2 = 4$
 $2x = 2$
 $x = 1$
and so $y = 3$.
Equivalent of $\frac{1}{4}$ and $y = 1 + (1,3)$
 $y - 3 = 4(x-1)$
 $y - 3 = 4(x-1)$
($\frac{1}{y} = 4x - 4$
 $\frac{1}{y} = 4x - 4$
($\frac{1}{y} = 4x - 4$
($\frac{1}{y} = 4x - 1$
($\frac{1}{y} = \frac{1}{x} - \frac{1}{x}$
(i) Focus $(-2, -5)$
(ii) $x = -2$
(iv) $(x+2)^{2} = -4a(y+3)$
 $(x+2)^{2} = -8(y+3)$

Marking scale.

(· · ·

a)	0.006 × 0.006	I mark.
	0.06 × 0.06 OR the like	12 mark

0.0062 × 0.9948 12 marks

(0.994)^s I mark

(i)
$$lmark$$
 (""")
 $7(3x+2)^{6},3$ is oK.

d) (i)
$$a = -2 \frac{1}{2} mark$$

- (ii) no halfmarks.
- (111) -2 ± mark y=-2 ± mark.

$$\begin{array}{c} 123334 \cdot \qquad \text{folution to Puestion(s)} \\ (a) \lim_{x \to 2} 2(x+2)(x/2) \\ (x/2) \\ \hline \\ 1] = @ \\ (b) \quad 5x = 7 \\ x (\sigma_{2,10} 5 = (\sigma_{3,10} 7) \\ \vdots & y = \frac{1\sigma_{3,10} 7}{(\sigma_{3,10} 5 - (\sigma_{3,10} 7) \\ \vdots & y = \frac{1\sigma_{3,10} 7}{(\sigma_{3,10} 5 - (\sigma_{3,10} 7) \\ \vdots & y = \frac{1}{(\sigma_{3,10} 5 - (\sigma_{3,10$$

QUESTION 4

(a) $3^2 \times 3^{\times -1} = 3^{\times -1}$ ATA 2B SW B 4B 6W, B x + 1 = -32 = -4 (b) (n $32 - 7 = e^{5}$ $\frac{1}{2} \left(\frac{2}{7} \times \frac{5}{6} + \frac{5}{7} \times \frac{2}{6} \right) \frac{1}{2} \left(\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \right)$ $\mathcal{X} = \frac{1}{3} \left(e^{5} + 7 \right).$ $\frac{5}{21}$ + $\frac{4}{15}$ $\frac{53}{105}$ (ii) $\ln (3^{x}e^{7x+2}) = \ln 15$ $\ln 3^{x} + \ln e^{7x+2} = \ln 15$ $2\log_{3}^{2} + 7x+2 = \log_{6}^{2}$ $2(\log_{6}^{3} + 7) = \ln 15 - 2$ $\frac{1}{2} \times \frac{2}{C_1 \times \frac{5}{C_1}} + \frac{1}{2} \times \frac{4}{C_1 \times \frac{5}{C_1}} + \frac{1}{2} \times \frac{4}{10} \times \frac{4}{C_1 \times \frac{5}{C_1}} = \frac{53}{105}$ (e) $\sqrt{(x-1)^2 + (y-2)^2} = 3(x-5)^2 + (y-6)^2$ $\frac{2}{\ln 3} = \frac{\ln 15 - 2}{\ln 3 + 7}$ x2-2x+1+y2-4x+4 $= 9x^2 - 90x + 225 + 9y^2 - 108y + 324$ $\begin{array}{l} \hline c) & g(z) = & \ln(z - i) \\ f[g(z)] = & e^{2i\ln(z - i)} + 3 \end{array}$ 82-882 + 8y- 1044 + 544 = 0 $\chi^{2} - 11\chi + (11)^{2} + y^{2} - 13\chi + (13)^{2} = -68 + 72^{2}$ $=e^{\log_e(x-1)^2}+3$ $(\chi - \frac{12}{2})^2 + (\chi - \frac{13}{2})^2 = \frac{9}{2}$ $\left| \frac{1}{1} \right| = \left(\frac{\chi - 1}{1} \right)^2 + 3$ Circle $C\left(\frac{1}{2},\frac{1}{2}\right) \Gamma \frac{3\sqrt{2}}{2}$ Domain all real 26. Range. y>3.

ъ , ⁻

5. Q5.(a) y = |x|11 Maths $\int -\frac{y}{x} = f(x)$ (b) $y = x^2(x-6) + \frac{4}{2}$; x > 0 P, Q lie on curve Q-(2,Ma) (i) Show $PQ = \sqrt{170}$. When $\bar{x} = 1$, y = 1(-5) + 4, = -1 $\Rightarrow p(-5) + 4$, = -1When x = 2, $y = 4(-4) + \frac{4}{2} = -14$ =) (2(2-14))3, $dp_{02} = \sqrt{(2-1)^2 + (-1.4+1)^2}$ $=\sqrt{1+169}$ = 5170, $\begin{array}{c} (ii) \quad y' = \frac{2}{3x^2 - 12x - 4x^2} \\ z = \frac{3}{3x^2 - 12x - 4x^2} \\ z = \frac{1}{3x^2 - 12x - 4x^2} \\ y'(1) = 1 + \frac{10 - 4}{12x - 4x^2} = -13 \\ \hline Point Q' y'(2) = 4 - 16 - 1 = -13 \\ \end{array}$ bintp

Then, tangent at P(1,-1) = -13(II) (cont) is y + 1 = -13(x - 1)y + 1 = -13x + 134 y==3x+12 () v Eqn of tangent at Q (2,-14) and m=-13 $\frac{1}{7} \frac{1}{7} \frac{1}$ mi=mi:parallel + same line (M) Normal at P. => m= 13 y + (= i3(x - 1))13y + 13 = x - 1-26+139+14=0 #. n (no sold) Price (C)28000 54 28000-1000 54+2: 28000-2x1000 54+2×2. X = no of \$1000 reductions Income = Price XM T = (28000 - 1000x)(54 + 2x) 4/

 $T = \frac{1512000 + 56000 \times -54000 \times (-2000 \times 2)}{-2000 \times 2}$ $I = 1512000 + 2000 \times - 2000 \times$ $\overline{J}' = 2000 = 4000 \text{ sc}, V$ Far tp's $\overline{J} = 0 \implies -4000 \text{ c}$ $c = \frac{1}{2}$ I" = -4000 > max_at or T.P. at $x = \frac{-b}{2a}$. (quadratic) = 2 and a Co- max, When sc = 5, I = \$1513500. . Price should be set at $\frac{28000 - 1000 \times \frac{1}{2}}{2}$ = \$27500