

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2013 November Year 11 Assessment Task 1

Mathematics (2 Unit)

General Instructions

- Reading Time 5 Minutes
- Working time 1 ½ Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- EACH QUESTION IS TO BE RETURNED IN A SEPARATE BUNDLE. Q1, Q2, Q3, Q4 and Q5
- All necessary working should be shown in every question if full marks are to be awarded
- Leave all answers in simplified exact form unless indicated otherwise.

Total Marks - 80

• Attempt questions 1-5

Examiner: F Nesbitt

This is an assessment task only and does not reflect the content or format of the Higher School Certificate

Question 1 (16 marks)

(a) Show that
$$x^4 - 3x^2 - 2$$
 is an even function.

(b) Find
$$\lim_{x \to 3} \frac{3x}{x+2}$$
 1

(c) Evaluate
$$\sum_{n=1}^{6} (2n-3)$$
 2

$$(1) y = x^2 + 2x$$

(ii)
$$y = 3x - \frac{2}{x^3}$$

(iii)
$$y = \frac{2x}{1+x^2}$$
 5

(e) Simplify fully:

(i)
$$a^5 \div a^{-3}$$

(ii) $\left(\frac{2n^2}{-m}\right)^3 \left(\frac{-m^3}{n}\right)^2$ 3

(iii)
$$\log_3 81 + \log_3 9 + \log_3 243$$
 1

(f)
$$f(x) = 3x^3 - 3x^2 + bx + 5$$

Find the value of b if f(x) has only one stationary point.

2

2

Question 2: (16 marks)

(a) The quadratic equation $3x^2 + 9x + 1 = 0$ has roots α and β . Write the value of:

(i)
$$\alpha + \beta$$

(ii) $\frac{1}{\alpha} + \frac{1}{\beta}$

(iii)
$$(\alpha + 2)(\beta + 2)$$
 5

(b) Find the equation of the normal to
$$y = \frac{x^2}{2}$$
 at the point (4,8). 3

(c) Find the largest possible domain and range for each of the following functions

$$(i) \qquad y = 3x^2 - 5$$

(ii)
$$y = 3^x + 1$$

(iii)
$$y = \frac{1}{x+5}$$

(iv)
$$y = \frac{1}{\sqrt{2 - x^2}}$$
 8

Question 3 (16 marks)

(a)	A die is biased so that to throw a six is twice as likely as throwing any other number. What is the probability of throwing:			
	(i)	a two?		
	(ii)	a six?	2	
(b)	The first four terms of an arithmetic series are $-5 - 1 + 3 + 7 + \dots$			
	(i)	What is the nth term		
	(ii)	Find the sum of the first 20 terms	3	
(c)	Find the equation of the locus of a point which is always $\sqrt{3}$ units			
	From	the point (-3 ,5)	1	
(d)	Find the equation of the locus of a point that moves so that			
	It is always equidistant from the line $6x + 8y - 5 = 0$ and			
	The lin	he $5x + 12y - 1 = 0$.	3	
(e)	Lily bought 2 tickets in a small raffle. 20 tickets were sold. There were			
	two prizes. What is the probability that Lily won:			
	(i)	both prizes?		
	(ii)	at least one prize?	3	
(f)	Find what value(s) of k does the equation $x^2 + kx + 8 - k = 0$ have			
	(i)	equal roots (ii) real and distinct roots	4	

Question 4 (16 marks)

- (a) Express the following series in sigma notation: $1 \times 4 + 2 \times 5 + 3 \times 6 + \dots 10 \times 13$ 2
- (b) What is the value of f(3a 1) if f(x) = (2x 3)? 2
- (c) Simplify fully:

(i)
$$8^{\frac{1}{2}} \div 2^{\frac{1}{2}}$$

(ii) $\log_a(a^2 + a) - \log_a(a + 1)$ 3

(d) For the curve
$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x - 1$$
:

(i)	Find the coordinates of any stationary points and determine		
	their nature.	3	
(ii)	Find any point(s) of inflexion.	2	
(iii)	Sketch the curve in the domain $-4 \le x \le 3$	3.	
(iv)	What is the maximum value of $f(x)$ in the given domain?	1	

Question 5 (16 marks)

(a) Write the coordinates of the focus and the equation of the directrix of the parabola $3y^2 = 4x$ 2

(a) Solve the inequation:
$$2x^2 - 9x + 7 > 0$$
 3

(b) Find, from first principles, the derivative of
$$y = x^2 - 6x + 5$$
 3

(c) Find the domain and range of
$$y = \log(x-2)(x-5)$$
 2

- (d) George has inherited a sum of \$80 000. He deposited it in the bank in an account earning five percent per annum interest compounded annually. He enjoys an annual European holiday and plans to withdraw \$10 000 at the end of each year to finance his holiday. Let A_n be the amount in the account after *n* years.
 - (i) Show that $A_3 = 80000(1.05)^3 - 10000(1.05)^2 - 10000(1.05) - 10000$
 - (ii) Find an expression for A_n .
 - (iii) Calculate the number of annual holidays George will be able to fully finance from his account.

2

2013 YEAR IL MATHS (24) TAGK 1 a) Let $f(x) = x^4 - 3x^2 - 2$ $f(-x) = (-x)^{4} - 3(-x)^{2} - 2$ $= x^{4} - 3x^{2} - 2$. = f(x) $x^{-1} = x^{-1} - 3x^{-2} - 2$ is even b) $\lim_{x \to 3} \frac{3x}{x+2} = \frac{9}{5}$ c) $\sum (2n-3) = 7$ first term a = -1. Last term 2(b) - 3 = 9. $S_{L}=\frac{1}{2}(a+\ell)$ $=\frac{b}{2}(-1+9)$ = 24. dy = 2x + 2d) i) $y = x^2 + 2x$. 1) ii) $y = 3x - 2x^{-3}$ $dy = 3 + 6x^{-4} = 3 + 6$ (iii) $y = \frac{2x}{1+x^2} = \frac{y}{\sqrt{2}} \frac{dy}{dx} = \frac{yu' - uv'}{\sqrt{2}}$ = $\frac{(1+x^2)(2) - (2x)(2x)}{(1+x^2)(2)}$

 $= \frac{2 + 2x^2 - 4x^2}{(1 + x^2)^2}$ $= \frac{2 - 2x^2}{(1 + x^2)^2}$ $= \frac{2(1-x^2)}{(1+x^2)^2}$ $\frac{-2(x^2-1)}{(x^2+1)^2}$ e) i) $\frac{a^5}{a^3} = a^8$ ii) $\left(\frac{2n^2}{-m}\right)^3 \left(\frac{-m^3}{n}\right)^2$ $=\left(\frac{8n^{b}}{-m^{3}}\right)\left(\frac{m^{b}}{n^{2}}\right)$ $= \frac{8n^{b}m^{b}}{-m^{3}n^{2}}$ = -8n^{4}m^{3} 11) $\log_{3}81 + \log_{3}9 + \log_{3}2u3$. 11 $f(x) = 3x^3 - 3x^2 + bx + 5.$ $f'(x) = 9x^2 - 6x + p$. for only 1 sttn A=0 $A = b^{2} - 4ac$ = (-b)^{2} - 4(9(b) = 0 3b - 3b = 0

YRII 2 unit assessment Task 1 Nov 2013 (2) (a) $3x^{2} + 9x + 1 = 0$ $d + \beta = -\frac{b}{a}$ a = 3, b = 9, c = 1 (b) ap=4 $(j_{d+\beta} = -\frac{g}{3} = -3)$ $(11) \left(\mathcal{L} + 2 \left(\beta + 2 \right) \right)$ = 2B+2x+2B+4 = dB+2(a+B)+4 $=\frac{1}{3}+2x-3+4 = -\frac{1}{3}\left(-\frac{5}{3}\right)$ (b) $y = \frac{x}{2}$ $y' = \frac{2x}{2} = x$ At x = 4 gradient tangent is m = 4 ($m = -\frac{1}{4}$) \therefore gradient of normal is $m = -\frac{1}{4}$ $Msing (y-y_{1}) = m(\alpha-x_{1})$ $y-8=-\frac{1}{4}(x-4)$ $y - 8 = -\frac{x}{4} + 1$ $y = -\frac{x}{4} + 9$ or x + 4y - 3b = 0

<u>Auestion 3:</u>	d) $d_1 = \frac{6x + 8y - 5}{16^2 + 8^2}$
a) $\{1, 2, 3, 4, 5, 6, 6\}$ i) $P(2) = \frac{1}{7}$	$= \frac{6 \times 4 8 y - 5}{10}$
$) P(6) = \frac{2}{7}$	$d_2 = \frac{5\alpha + 12y - 1}{\sqrt{5^2 + 12^2}}$
b) $T_1 = -5$, $T_2 = -1$, $T_3 = 3$, $T_4 = 7$ d = 4.	$= \frac{5x + 12y - 1}{13}$
$\begin{array}{r} 1) I_n = \ a + (n-1)a \\ = -5 + (n-1)4 \\ = -5 + 4n - 4 \end{array}$	When $d_1 = d_2$
= 4n - 9	$\frac{ 6x + 8y - 5 }{10} = \frac{ 5x + 12y - 1 }{13}$
$S_{2n} = \frac{11}{2} \left(2(-5) + (20-1)4 \right)$	<u>case 1:</u> (Positive)
= 10(-10 + 76) = 660	$\frac{13(6x+8y-5) = 10(5x+12y-1)}{78x+104y-65 = 50x+120y-10}$ $\frac{28x-16y-55=0}{28x-16y-55=0}$
c) $(x - x_1)^2 + (y - y_1)^2 = r^2$	<u>case 2</u> : (one negative)
$\therefore (\alpha - (-3))^{2} + (\gamma - 5)^{2} = (\sqrt{3})^{2}$ $(\alpha + 3)^{2} + (\gamma - 5)^{2} = 3$	78x + 104y - 65 = -50x - 120y + 11 128x + 224y - 75 = 0
	e) Ist Prize 2nd Prize
	$\frac{2}{10}$ W $\frac{18}{19}$ L
	120 L VV

i) $P(WW) = \frac{2}{20} \times \frac{1}{19}$ = | 190 ii) At least one . I - P(LL) $= 1 - \left(\frac{18}{20} \times \frac{17}{19}\right)$ = <u>37</u> 190 f) $x^{2} + kx + 8 - k = 0$ i) equal roots $\Delta = 0$ $\Delta \Rightarrow k^2 - 4(1)(8 - k) = 0$ $k^2 - 32 + 4k = 0$ $k^2 + 4k - 32 = 0$ (k - 4)(k + 8) = 0k = 4, -8ii) real and distinct $\Delta > 0$. k>4, k<-8

$$(P_{105}\pi\pi\pi) 4$$
(a) $\sum_{T=1}^{10} \pi(T+3)$
(b) $f(3a-1) = a(3a-1) = 3$
 $= 6a-5$
(c) (1) $8^{\frac{1}{2}} = a^{\frac{1}{2}} = (\frac{8}{a})^{\frac{1}{2}}$
 $= a$.
(") $M_{2a} = \frac{a^{2}+a}{a+1} = M_{2a} a$
 $= 1$.
(d)(1) $f(a) = \frac{1}{3}x^{\frac{3}{2}} + \frac{1}{3}x^{\frac{3}{2}} - dx - 1$
 $f(a) = 3x^{\frac{3}{2}} + \frac{1}{3}x^{\frac{3}{2}} - dx - 1$
 $f(a) = 2x + 1$.

 $J_{11} = at A_{11} th A_{21} th A_{22} th A_{22} - 1$
 $(x+a)(x-1) = 0$
 $(x+a)(x-1)$

Q4 (CONTD) For possible inflection (") let f (x) = 0 ie. 2x+, =0 $\chi = -\frac{1}{2}$.: (-tz, -', r) is a possibility The .: charge in concavity . (- ta, ta) is a point of influence. (3,62) (111) (-2,23) υ (-1, 1) (-1, 1) (1,-24)

台之 (/ /)

 $5(a) 3y^{2} = 4\pi$ y~= 43 R $a = \frac{1}{3} \sqrt{(0,0)}$ [v]-. Focus S(\$,6) Directive xy = -1/3 $\chi = \frac{7}{2}$, 1 (b) $2x^2 - 9x + 7 > 0$ (2x-7)(x-1)>D K<1, スフ美 [3] (c) $f(x) = \chi^2 - 6\chi + 5$ $J'(x) = \lim_{h \to 0} \frac{(24h)^2 - 66h(h) + 5 - (x^2 - 6x + 5)}{h}$ $= \lim_{h \to 0} \frac{\chi^{2} + 2\kappa h + h^{2} - (n - 6h^{45} + 6n - 5)}{h} = 2\pi - 6 [3]$ = $\lim_{h \to 0} h (2\kappa + h - 6) = 2\pi - 6 [3]$ (d) A = SOK A1 = 80Kx 1.05-10K $A_2 = A_1 \times 1.05 - 10K$ [2] = 80K(1.05) - 10K(1.05) - 10K $A_3 = 80k(10s)^3 - 10k(10s)^2 - 10k(10s) - 10k$ (1) $H_n = 80k(1.05)^n - 10k(1.05^{n}-1)$ [3] (In) We seek LNJ for An KO 10 05 80k (1.05)" (0.05) - 10k (1.05"-1) 0< 80 (1.05)"(0.05) - 10 (1.05") +10 57 : n <10.469 $6(1.25^{n}) < 10$

n < In 10% This ... 10 holidays are possible.