SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2013 November
 Year 11 Assessment Task 1

Mathematics

(2 Unit)

General Instructions

- Reading Time-5 Minutes

Total Marks - 80

- Attempt questions $1-5$

Examiner: F Nesbitt

Question 1 (16 marks)

(a) Show that $x^{4}-3 x^{2}-2$ is an even function.
(b) Find $\lim _{x \rightarrow 3} \frac{3 x}{x+2}$
(c) Evaluate $\quad \sum_{n=1}^{6}(2 n-3)$
(d) Differentiate:
(I) $y=x^{2}+2 x$
(ii) $y=3 x-\frac{2}{x^{3}}$
(iii) $y=\frac{2 x}{1+x^{2}}$
(e) Simplify fully:
(i) $a^{5} \div a^{-3}$
(ii) $\quad\left(\frac{2 n^{2}}{-m}\right)^{3}\left(\frac{-m^{3}}{n}\right)^{2}$
(iii) $\log _{3} 81+\log _{3} 9+\log _{3} 243$
(f) $\quad f(x)=3 x^{3}-3 x^{2}+b x+5$

Find the value of b if $f(x)$ has only one stationary point.

Question 2: (16 marks)
(a) The quadratic equation $3 x^{2}+9 x+1=0$ has roots α and β. Write the value of:
(i) $\alpha+\beta$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iii) $(\alpha+2)(\beta+2)$
(b) Find the equation of the normal to $y=\frac{x^{2}}{2}$ at the point $(4,8)$.
(c) Find the largest possible domain and range for each of the following functions
(i) $y=3 x^{2}-5$
(ii) $\quad y=3^{x}+1$
(iii) $y=\frac{1}{x+5}$
(iv) $y=\frac{1}{\sqrt{2-x^{2}}}$

Question 3 (16 marks)

(a) A die is biased so that to throw a six is twice as likely as throwing any other number. What is the probability of throwing:
(i) a two?
(ii) a six?
(b) The first four terms of an arithmetic series are $-5-1+3+7+\ldots \ldots$
(i) What is the nth term
(ii) Find the sum of the first 20 terms
(c) Find the equation of the locus of a point which is always $\sqrt{3}$ units From the point (-3,5)
(d) Find the equation of the locus of a point that moves so that It is always equidistant from the line $6 x+8 y-5=0$ and The line $5 x+12 y-1=0$.
(e) Lily bought 2 tickets in a small raffle. 20 tickets were sold. There were two prizes. What is the probability that Lily won:
(i) both prizes?
(ii) at least one prize?
(f) Find what value(s) of k does the equation $x^{2}+k x+8-k=0$ have
(i) equal roots (ii) real and distinct roots

Question 4 (16 marks)
(a) Express the following series in sigma notation:

$$
1 \times 4+2 \times 5+3 \times 6+\ldots . .10 \times 13
$$

(b) What is the value of $f(3 a-1)$ if $f(x)=(2 x-3)$?
(c) Simplify fully:
(i) $8^{\frac{1}{2}} \div 2^{\frac{1}{2}}$
(ii) $\quad \log _{a}\left(a^{2}+a\right)-\log _{a}(a+1)$
(d) For the curve $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x-1$:
(i) Find the coordinates of any stationary points and determine their nature.
(ii) Find any point(s) of inflexion.
(iii) Sketch the curve in the domain $-4 \leq x \leq 3$
(iv) What is the maximum value of $f(x)$ in the given domain?

Question 5 (16 marks)

(a) Write the coordinates of the focus and the equation of the directrix of the parabola $3 y^{2}=4 x$
(a) Solve the inequation: $2 x^{2}-9 x+7>0 \quad 3$
(b) Find, from first principles, the derivative of $y=x^{2}-6 x+5$
(c) Find the domain and range of $y=\log (x-2)(x-5)$
(d) George has inherited a sum of $\$ 80000$. He deposited it in the bank in an account earning five percent per annum interest compounded annually. He enjoys an annual European holiday and plans to withdraw $\$ 10000$ at the end of each year to finance his holiday.

Let A_{n} be the amount in the account after n years.
(i) Show that

$$
A_{3}=80000(1.05)^{3}-10000(1.05)^{2}-10000(1.05)-10000
$$

(ii) Find an expression for A_{n}.
(iii) Calculate the number of annual holidays George will be able to fully finance from his account.

2013 YEAR 11 MATHS (2U) TASK 1
a) Let $f(x)=x^{4}-3 x^{2}-2$.

$$
\begin{align*}
f(-x) & =(-x)^{4}-3(-x)^{2}-2 \tag{2}\\
& =x^{4}-3 x^{2}-2 \\
& =f(x)
\end{align*}
$$

$\therefore f(x)=x^{4}-3 x^{2}-2$ is even.
b) $\lim _{x \rightarrow 3} \frac{3 x}{x+2}=\frac{9}{5}$.
c)

$$
\begin{align*}
& \sum_{n=1}^{6}(2 n-3) \Rightarrow \text { first term } a=-1 \tag{1}\\
& \text { last term } 2(6)-3= \\
& s_{6}=\frac{n}{2}(a+l) \tag{2}\\
&=\frac{6}{2}(-1+9) \\
&=24
\end{align*}
$$

d) i) $y=x^{2}+2 x \quad \frac{d y}{d x}=2 x+2$
ii) $y=3 x-2 x^{-3} \quad \frac{d y}{d x}=3+6 x^{-4}=3+\frac{6}{x^{4}}$
(iii)

$$
\begin{align*}
y=\frac{2 x}{1+x^{2}}=\frac{u}{v} \quad \frac{d y}{d x} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \tag{2}\\
& =\frac{\left(1+x^{2}\right)(2)-(2 x)(2 x)}{\left(1+x^{2}\right)^{2}}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2-2 x^{2}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \quad \frac{-2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

e) i) $\frac{a^{5}}{a^{-3}}=a^{8}$
ii)

$$
\begin{aligned}
& \left(\frac{2 n^{2}}{-m}\right)^{3}\left(\frac{-m^{3}}{n}\right)^{2} \\
= & \left(\frac{8 n^{6}}{-m^{3}}\right)\left(\frac{m^{6}}{n^{2}}\right) \\
= & 8 n^{6} m^{6} \\
= & -8 m^{3} n^{2} \\
= & n^{4} m^{3}
\end{aligned}
$$

iii) $\log _{3} 81+\log _{3} 9+\log _{3} 243$.

$$
\begin{equation*}
4+2+5=11 \tag{1}
\end{equation*}
$$

f)

$$
\begin{align*}
& f(x)=3 x^{3}-3 x^{2}+b x+5 \\
& f^{\prime}(x)=9 x^{2}-6 x+b \tag{2}
\end{align*}
$$

for only 1 stn $\Delta=0$.

$$
\begin{gathered}
A=b^{2}-4 a c \\
=(-6)^{2}-4(9)(b)=0 \\
36-36 b=0 \\
b=1
\end{gathered}
$$

YRII 2 unit Assessment TaskI No 2013.
(2)

$$
\begin{align*}
& \text { a) } 3 x^{2}+9 x+1=0 \\
& \alpha+\beta=-\frac{b}{a} \quad a=3, b=9, c=1 \\
& \alpha \beta=\frac{c}{a} \tag{1}
\end{align*}
$$

(i) $\alpha+\beta=-\frac{9}{3}=-3$
(ii)

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-3}{\frac{1}{3}}=-9 \tag{2}
\end{equation*}
$$

(iii)

$$
\begin{align*}
& (\alpha+2)(\beta+2) \\
& =\alpha \beta+2 \alpha+2 \beta+4 \\
& =\alpha \beta+2(\alpha+\beta)+4 \\
& =\frac{1}{3}+2 x-3+4=-1 \frac{2}{3} \tag{2}
\end{align*}
$$

(b)

$$
\begin{aligned}
& y=\frac{x^{2}}{2} \\
& y^{\prime}=\frac{2 x}{2}=x
\end{aligned}
$$

at $x=4$, gradient tangent is $m=4$
(C)
(i) $y=3 x^{2}-5$
$D: \mathbb{R}$

R; $y \geq-5$
(ii) $y=3^{x}+1 \uparrow$
$D: \mathbb{R}$ (1)

$R: y>1$
(iii) $y=\frac{1}{x+5} \quad x \neq-5$

D : all $\mathbb{R}, x \neq-5$ (i)
(iv) $y=\frac{1}{\sqrt{2-x^{2}}}$

$$
\begin{align*}
& \quad\left(2-x^{2}>0\right) \\
& D:-\sqrt{2}<x<\sqrt{2} \\
& R: y \geqslant \frac{1}{\sqrt{2}} \tag{1}
\end{align*}
$$

Question 3:
a) $\{1,2,3,4,5,6,6\}$
i) $P(2)=\frac{1}{7}$
ii) $P(6)=\frac{2}{7}$
b)

$$
\begin{aligned}
& T_{1}=-5, T_{2}=-1, T_{3}=3, T_{4}=7 \\
& d=4 .
\end{aligned}
$$

i)

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
& =-5+(n-1) 4 \\
& =-5+4 n-4 \\
& =4 n-9
\end{aligned}
$$

ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
S_{20} & =\frac{20}{2}(2(-5)+(20-1) 4) \\
& =10(-10+76) \\
& =660
\end{aligned}
$$

c) $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}$

$$
\begin{aligned}
\therefore(x-(-3))^{2}+(y-5)^{2} & =(\sqrt{3})^{2} \\
(x+3)^{2}+(y-5)^{2} & =3
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
d_{1} & =\frac{|6 x+8 y-5|}{\sqrt{6^{2}+8^{2}}} \\
& =\frac{|6 x+8 y-5|}{10}
\end{aligned}
$$

$$
\begin{aligned}
d_{2} & =\frac{|5 x+12 y-1|}{\sqrt{5^{2}+12^{2}}} \\
& =\frac{|5 x+12 y-1|}{13}
\end{aligned}
$$

When $d_{1}=d_{2}$

$$
\frac{|6 x+8 y-5|}{10}=\frac{|5 x+12 y-1|}{13}
$$

case 1: (Positive)

$$
\begin{aligned}
& 13(6 x+8 y-5)=10(5 x+12 y-1) \\
& 78 x+104 y-65=50 x+120 y-10 \\
& 28 x-16 y-55=0
\end{aligned}
$$

case 2: (one negative)

$$
\begin{aligned}
& 78 x+104 y-65=-50 x-120 y+11 \\
& 128 x+224 y-75=0
\end{aligned}
$$

e) Sst Prize and Prize

$$
\begin{aligned}
& 2 / 20 \\
& 18 / 20 \\
& \sum_{18 / 19}^{1 / 19} L \sum_{17 / 19}^{2 / 19} L
\end{aligned}
$$

i)

$$
\begin{aligned}
P(W W) & =\frac{2}{20} \times \frac{1}{19} \\
& =\frac{1}{190}
\end{aligned}
$$

ii) At least one

$$
\begin{aligned}
\therefore & 1-P(L L) \\
& =1-\left(\frac{18}{20} \times \frac{17}{19}\right) \\
& =\frac{37}{190}
\end{aligned}
$$

f) $x^{2}+k x+8-k=0$
i) equal roots $\Delta=0$

$$
\begin{array}{r}
\Delta \Rightarrow k^{2}-4(1)(8-k)=0 \\
k^{2}-32+4 k=0 \\
k^{2}+4 k-32=0 \\
(k-4)(k+8)=0 \\
\therefore k=4,-8
\end{array}
$$

$$
\begin{aligned}
& \text { ii) real and distinct } \\
& \Delta>0 \\
& \therefore \quad k>4, k<-8
\end{aligned}
$$

Queston 4
(a) $\sum_{r=1}^{10} r(r+3)$
(b)

$$
\begin{aligned}
f(3 a-1) & =2(3 a-1)-3 \\
& =6 a-5
\end{aligned}
$$

(C)

$$
\text { (} \begin{aligned}
8^{\frac{1}{2}} \div 2^{\frac{1}{2}} & =\left(\frac{8}{2}\right)^{\frac{1}{2}} \\
& =2 .
\end{aligned}
$$

$$
\text { (") } \log _{a} \frac{a^{2}+a}{a+1}=\log _{a} a
$$

$$
=1
$$

$$
\text { (d)(1) } \begin{aligned}
f(x) & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x-1 \\
f^{\prime}(x) & =x^{2}+x-2 \\
f^{\prime \prime}(x) & =2 x+1 .
\end{aligned}
$$

For st. pinh let $f^{\prime}(x)=0$

$$
\begin{aligned}
(x+2)(x-1) & =0 \\
x & =,-2
\end{aligned}
$$

$\therefore\left(1,-\frac{13}{6}\right)$ and $\left(-2,2 \frac{1}{3}\right)$ are stationacy $f t$.
Lest nature $f^{\prime \prime}(1)=3 \quad \therefore\left(1, \frac{-13}{6}\right)$ is a rel. snin. tuming πt.

$$
f^{\prime \prime}(-2)=-3 \therefore\left(-2,2 \frac{1}{3}\right) \text { is a rel. }
$$

sare theing $1 t$.
Q_{4} (conts)
(") For poscikle inplecions
let $f^{\prime \prime}(x)=0$
ie. $2 x+1=0$

$$
x=-\frac{1}{2} .
$$

$\therefore\left(-\frac{1}{2}, \frac{1}{12}\right)$ is a possibilicy
Jant

x	-1	$-\frac{1}{2}$	0
$y^{\prime \prime}$	-1	0	1

\therefore change in carcaisity
$\therefore\left(-\frac{1}{2}, \frac{1}{12}\right)$ is a froict of implenin.

(iv) $6 \frac{1}{2}$
$5(a) 3 y^{2}=4 x$

$$
\begin{aligned}
y^{2} & =4 / 3 \pi \\
\therefore a & =1 / 3 \quad V(0,0)
\end{aligned}
$$

\therefore Focus $S(13,(3)$ Dirertixs $x y=-1 / 3$
(b)

$$
\begin{aligned}
& 2 x^{2}-9 x+7>0 \\
& (2 x-7)(x-1)>0 \quad x=\frac{7}{2}, 1 \\
& x<1, x>\frac{7}{2}
\end{aligned}
$$

[3]
(C)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-6(x+h)+5-\left(x^{2}-6 x+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-6 x-6 h^{+5} x^{2}+6 x-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-6)}{h}=2 x-6 \quad[3]
\end{aligned}
$$

(d) (1) $A_{0}=80 \mathrm{~K}$

$$
\begin{align*}
A_{0} & =80 \\
A_{1} & =80 k \times 1.05-10 K \\
A_{2} & =A_{1} \times 1.05-10 K \\
& =80 k(1.05)^{2}-10 K(1.05)-10 K \tag{3}\\
A_{3} & =80 k(1.05)^{3}-10 k(1.05)^{2}-10 k(1.05)-10 K
\end{align*}
$$

(11) $A_{n}=80 k(1.05)^{n}-\frac{10 k\left(1.05^{n}-1\right)}{1.05-1}$
(in) We seek Ln」 for $A_{n}<0$

$$
\begin{aligned}
& \text { le } 0<80 \mathrm{k}(1.05)^{n}(0.05)-10 \mathrm{~K}\left(1.05^{n}-1\right) \\
& 0<80(1.05)^{n}(0.05)-10\left(1.25^{n}\right)+10 \\
& 6\left(1.05^{n}\right)<10 \\
& \therefore n<10.469 \\
& {[3]} \\
& n<\frac{\ln 10 \%}{\ln 1.05} \quad \therefore 10 \text { holidayg are possible. }
\end{aligned}
$$

