TRINITY GRAMMAR SCHOOL

 Mathematics Department
(NESA Student Number | Year 12 only)

2019

Suggested solution.

Year 12

Mathematics

HSC ASSESSMENT TASK 1

Date of Assessment Task: Thursday, 15 November 2018

General

Instructions

- Reading time - not applicable to this Task
- Working time - 45 minutes
- Write using black pen
- NESA approved calculators may be used
- A formula and data sheet is provided
- In Questions 6-7, show relevant mathematical reasoning and/or calculations
- Write your NESA Student Number (Year 12 HSC) or Name (Year 11 or 10) and your Class teacher on the question paper and on any answer sheets or writing booklets used to write your responses to the questions submitted
- If you do not attempt a question you must submit an answer sheet or writing booklet for that question clearly indicating N/A and your NESA Student Number or Name

Total marks:

35

Section I-5 marks (pages 2-4)

- Attempt Questions 1 - 5
- Allow about 5 minutes for this section

Section II - 30 marks (pages 5 - 7)

- Attempt Questions 6-7
- Allow about 40 minutes for this section

[^0]Section I

5 marks
Attempt Questions 1 - 5
Use the multiple-choice answer sheet for Questions 1-5.

1 If $y=\left(x^{2}+3\right)^{5}$ then $\frac{d y}{d x}=5\left(x^{2}+3\right)(2 x)$

$$
=10 x\left(x^{2}+3\right)
$$

A. $2 x$
B. $5\left(x^{2}+3\right)^{4}$
C. $2 x\left(x^{2}+3\right)^{4}$
D. $10 x\left(x^{2}+3\right)^{4}$

2 Ken decided to use differentiation from first principles to differentiate the expression $2 x-x^{2}$. A correct expression, that Ken ought to have used in order to differentiate this expression is
A. $\quad \lim _{h \rightarrow 0}\left(\frac{2(x+h)-(x+h)^{2}}{h}\right)$

$$
\begin{aligned}
& \text { et } f(x)=2 x-x^{2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{2(x+h)-(x+h)^{2}-2 x+x^{2}}{h}\right]
\end{aligned}
$$

C. $\lim _{h \rightarrow 0}\left(\frac{x^{2}-2 x-(x+h)^{2}-2(x-h)}{h}\right)$
D. $\quad \lim _{h \rightarrow 0}\left(\frac{x^{2}-2 x+(x+h)^{2}-2(x+h)}{h}\right)$

3 The diagram below is of a parabola with vertex at $(-2,3)$ and it has y-intercepts at -1 , and 7 respectively.

The Cartesian equation of the parabola is given by
A. $(x+2)^{2}=4(y-3)$ $(y-k)^{2}=4 a(x-h)$
B. $(x+2)^{2}=8(y-3)$ $(y-3)^{2}=4 a(x+2)$ sub $(0,7)$
C. $(y-3)^{2}=4(x+2)$
$4^{2}=4 a(2)$
D.
$(y-3)^{2}=8(x+2)$

$$
\therefore \quad a=2
$$

4 The quadratic equation $2 k x^{2}-4 k x+1=0$ has two equal roots. The values) of k is
A. $\frac{1}{2}$ only

Want $k>0$ for a quadratic equation to exist and $\Delta=0$ for equal roots.
B. $\quad 0$ and $\frac{1}{2}$

$$
\therefore \quad(-4 k)^{2}-4(2 k)(1)=0
$$

C. 2 only

$$
\begin{aligned}
& 16 k^{2}-8 k=0 \\
& 8 k(2 k-1)=0 \\
& \Rightarrow k=1 / 2 \text { only. }
\end{aligned}
$$

5 A quadratic equation with integer coefficients for which the sum and product of its roots is -3 and $-\frac{1}{2}$ respectively, is
A. $2 x^{2}-3 x-1=0$
B. $2 x^{2}-3 x-1=0$

D. $2 x^{2}-6 x-1=0$

$$
\begin{aligned}
& \therefore x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
& x^{2}-(-3 x)-\frac{1}{2}=0 \\
& x^{2}+3 x-\frac{1}{2}=0 \\
& 2 x^{2}+6 x-1=0
\end{aligned}
$$

Section II
30 marks
Attempt Questions 6-7
Allow about 40 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 6-7, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) Find:
(i) $\frac{d}{d x}\left(3+2 x^{3}\right) ;=6 x^{2}$
(ii) $\frac{d}{d x}\left(\frac{3 x+5}{x-2}\right)$ using the quotient rule;

$$
\begin{aligned}
& =\frac{(x-2)(3)-(3 x+5)(1)}{(x-2)^{2}} \\
& =-\frac{11}{(x-2)^{2}} \text { (should simplify) }
\end{aligned}
$$

(iii) $\frac{d}{d x}(x \sqrt{1+x})$ using the product rule.

$$
\begin{aligned}
& \rightarrow=(\sqrt{1+x})(1)+(x)\left[\frac{1}{2}(1+x)^{-1 / 2}(1)\right] \checkmark V \\
&=\sqrt{1+x}+\frac{x}{2 \sqrt{1+x}} \text { (should sinarify) }
\end{aligned}
$$

(b) Evaluate $\lim _{x \rightarrow 4}\left(\frac{x^{3}-64}{x-4}\right) \cdot \lim _{x \rightarrow 4} \frac{(x-4)\left(x^{2}+4 x+16\right)}{(x-4)} \leftarrow$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-4)\left(x^{2}+4 x+16\right)}{(x-4)} \leftarrow \vee \vee \cos \\
& =4^{2}+4(4)+16=48 \quad \cos x \rightarrow 4 .
\end{aligned}
$$

(c) Find the value of x for which $f(x)=x^{2}-2 x+1$ has zero gradient.

$$
\begin{aligned}
f^{\prime}(x)= & 2 x-2 \\
\text { want } & 2 x-2=0 \\
& \therefore x=1
\end{aligned}
$$

Question 6 continues on page 6

$$
\text { (con axe } x=-b / 2 a \text {). }
$$

[There are several
of her me Ehods]

$$
\begin{aligned}
& f(x)=(x-1)^{2} \\
& \therefore x=1 \text { is a zero } \\
& \Delta=0 \text { a well. } \\
& \frac{4}{*}(1,0) \text { is the vertex. }
\end{aligned}
$$

Question 6 (continued)

(d) Consider the diagram below where the graph of $y=g(x)$ is a straight line and tangent to the graph of $y=f(x)$ at the point where $x=1$. The graph of $y=g(x)$ intersects the y-axis at $\left(0, \frac{1}{2}\right)$ and passes through the point $(2,4.5)$.

(i) Find the value of $f^{\prime}(1)=\frac{4.5-\frac{1}{2}}{2-0}=2$
(ii) Evaluate $f(1)$.

$$
\begin{align*}
& g(x)=2 x+b \tag{2}\\
& \text { but } s=\frac{1}{2} \text { (y-int } s
\end{align*}
$$

$$
\therefore g(x)=2 x+1 / 2
$$

$$
\begin{aligned}
& \therefore \quad f(1)=g(1)=2 \times 1+\frac{1}{2} \\
&=2.5 \mathrm{ml} \text { of Question } 6 \\
& {[\text { There may be other }} \\
& {\left[\begin{array}{ll}
\therefore \quad \text { methods }]
\end{array}\right.}
\end{aligned}
$$

End of Question 6

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) The roots of a quadratic equation $x^{2}-3 x-7=0$ are α and β.

Without finding the actual roots,
(i) Write down the value of $\alpha+\beta$. $=3 \quad(-b / a)$
(ii) Write down the value of $\alpha \beta$. $=-7(c / a)$
(iii) Evaluate $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{3}{7}$
(iv) Evaluate $a^{2} \beta+\beta^{2} \alpha=\alpha \beta(\alpha+\beta)=(7)(3)$

$$
=-21
$$

(v)
(b) Find the values) of k for which the expression $k x^{2}+3 x+k-2$ is positive definite.

Want $k>0$ and $\Delta<0$ u
ts are $k=\frac{8 \pm \sqrt{64-4(4)(-9)}}{8}=\frac{8 \pm \sqrt{208}}{8}$
(d) A parabola has its focus at $(0,5)$ and its vertex at $(0,8)$. Find the focal length and the equation of the directrix of this parabola.

$$
\therefore k>1+\frac{\sqrt{13}}{2} \text { on } k
$$

(Since $k>0$ as well)
(e) Find the equation of the locus of a point $P(x, y)$ such that $A P$ and $P B$ are perpendicular, given $A(3,2)$ and $B(4,-1)$. Describe the locus of P.

$$
\begin{aligned}
& \text { ratiac } \alpha+\beta=(\alpha+\beta)^{2}-2(\alpha \beta) \\
& \equiv 3^{3^{2}}-x^{2(-1)}{ }^{23} 1
\end{aligned}
$$

(e)

Alternatively $A B$ is a diameton of cavircle.

$$
y^{2}-y-2=-x^{2}+7 x-12
$$ midpt is $M\left(\frac{3+4}{2}, \frac{2-1}{2}\right)=\left(\frac{7}{2}, \frac{1}{2}\right)$

$$
\begin{aligned}
& A M=\sqrt{\left(3-\frac{7}{2}\right)^{2}+\left(2-\frac{1}{2}\right)^{2}} \\
& \therefore\left(x-\frac{7}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=(A M)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-7 x+y^{2}-y=-10 \\
& x^{2}-7 x+\left(-\frac{7}{2}\right)^{2}+y^{2}-y+\left(-\frac{1}{2}\right)^{2} \\
& =-10+\left(-\frac{7}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2} \\
& =-10+\frac{49}{4}+\frac{1}{4} \\
& =5 / 2
\end{aligned}
$$

$$
\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=5 / 2
$$

Blank page
Centre $\left(\frac{1}{2}, \frac{1}{2}\right)$

$$
r=\sqrt{\frac{5}{2}}\left(=\frac{\sqrt{10}}{2}\right)
$$

[^0]: - HSC Assessment Weighting: 20\%

