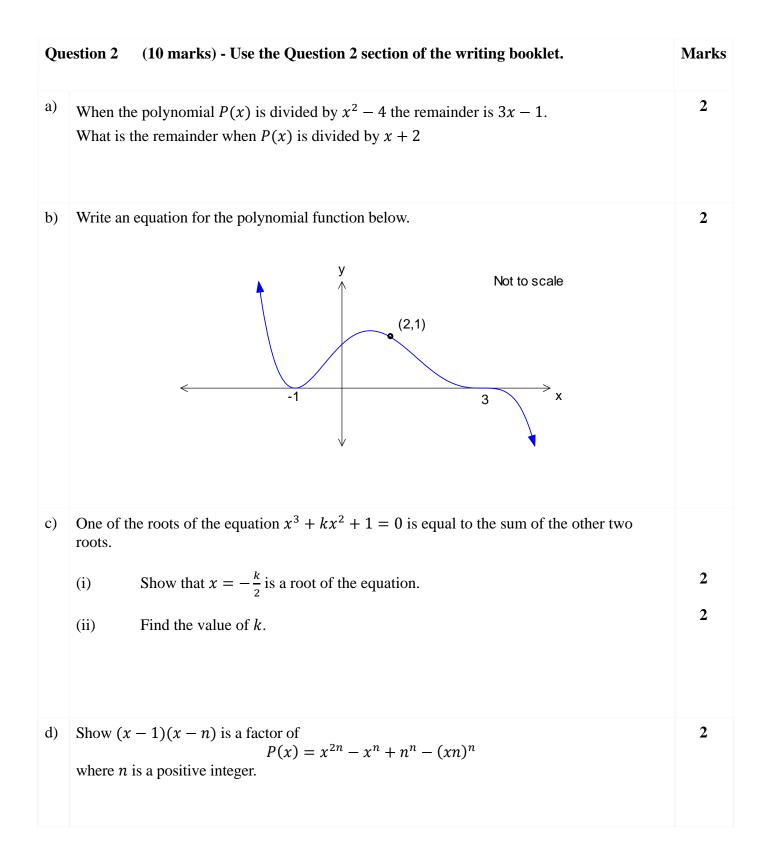


2016 Year 12 HSC Assessment Task 1 December

Mathematics Extension 1

General Instructions


- Reading time 5 minutes
- Working time 50 minutes
- Write using non erasable black or blue pen
- Board-approved calculators may be used
- Show all necessary working
- Marks may be deducted for careless or badly arranged work

Total marks – 33

Questions 1-3 (pages 2-4)

Answer each question on the appropriate pages of your answer booklet.

Qu	estion 1 (11 marks) - Use the Question 1 section of the writing booklet.	Marks
a)	Find the value of k if $(x - 2)$ is a factor of $P(x) = x^3 - kx + 6$	1
b)	If α , β and γ are the roots of the equation $2x^3 - 3x - 4 = 0$ Find the value of (i) $\alpha + \beta + \gamma$ (ii) $\alpha\beta + \alpha\gamma + \beta\gamma$ (iii) $\alpha\beta\gamma$ (iv) $\alpha^2 + \beta^2 + \gamma^2$	1 1 1 2
c)	Given the polynomials $f(x) = 2x^4 - 10x^3 + 12x^2 + 2x - 3$ and $g(x) = x^2 - 2x + 1$. Find expressions for $A(x)$ and $R(x)$ if $f(x) = g(x)A(x) + R(x)$.	2
d)	For all positive integers of <i>n</i> , use mathematical induction to prove $\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots + \frac{1}{(n+1)(n+2)} = \frac{n}{2(n+2)}$	3

Qu	estion 3 (12 ma	rks) - Use the Question 3 section of the writing booklet.	Marks
a)	An odd polynomi tangent at $x = 1$ Find an equation		3
b)	(ii) Show t(iii) Hence,	the polynomial $P(x) = x^4 - 4x^2$ hat $P(x)$ has stationary points at (0,0), $(-\sqrt{2}, -4)$ and $(\sqrt{2}, -4)$. or otherwise, find all the values of k such that $P(x) + k = 0$ will have two solutions.	2 2 2
c)	Use mathematica	l induction for prove $n^3 - n$ is divisible by 6 for all positive integers of n .	3
		End of the Exam	

BAULKHAM HILLS HIGH SCHOOL - EXTENSION 1 2016 HSC Task 1 SOLUTIONS

Solution	Mks	Comments
QUESTION 1		·
$2^{3} - k(2) + 6 = 0$ k = 7	1	1 mark• Correct substitution.
$\alpha + \beta + \gamma = 0$	1	1 mark • Correct answer.
$\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$	1	1 mark• Correct answer.
$\alpha\beta\gamma=2$	1	1 mark• Correct answer.
$\begin{aligned} (\alpha + \beta + \gamma)^2 &= (\alpha + \beta)^2 + 2\gamma(\alpha + \beta) + \gamma^2 \\ (\alpha + \beta + \gamma)^2 &= \alpha^2 + \beta^2 + 2\alpha\beta + 2\alpha\gamma + 2\beta\gamma + \gamma^2 \\ \alpha^2 + \beta^2 + \gamma^2 &= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma) \\ &= (0)^2 - 2\left(-\frac{3}{2}\right) \\ &= 3 \end{aligned}$	2	 2 marks Correct solution 1 mark Significant progress to finding an expression for α² + β² + γ²
$2x^{4} - 10x^{3} + 12x^{2} + 2x - 3 = (x^{2} - 2x + 1)(2x^{2} - 6x - 2) + 4x - 1$ $A(x) = 2x^{2} - 6x - 2$ $R(x) = 4x - 1$	2	 2 marks Correct expressions 1 mark Significant progress towards solution.
Test for $n = 1$ $LHS = \frac{1}{(1+1)(1+2)}$ $= \frac{1}{6}$ $\therefore \text{ true for } n = 1$ Assume true for $n = k$ i.e. $\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots + \frac{1}{(k+1)(k+2)} = \frac{k}{2(k+2)}$ Prove true for $n = k + 1$ $\boxed{\text{Aim: } \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} = \frac{k+1}{2(k+3)}}$ $LHS = \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} = \frac{k+1}{2(k+3)}$ $= \frac{k}{2(k+2)} + \frac{1}{(k+2)(k+3)} \times \frac{2}{2} \qquad \text{if the assumption is true}$ $= \frac{1}{2(k+2)} \left[\frac{k(k+3)}{(k+3)} + \frac{2}{(k+3)} \right]$ $= \frac{1}{2(k+2)} \left[\frac{k^2 + 3k + 2}{(k+3)} \right]$ $= \frac{1}{2(k+2)} \left[\frac{(k+2)(k+1)}{(k+3)} \right]$ $= \frac{k+1}{2(k+3)}$ If it is true for $n = k$, then it is also true for $n = k + 1$.	3	 There are 4 key parts of the induction; 1. Proving the result true for n = 1 2. Clearly stating the assumption and what is to be proven 3. Using the assumption in the proof 4. Correctly proving the required statement 3 marks Successfully does all of the 4 key parts 2 marks Successfully does 3 of the 4 key parts 1 marks Successfully does 2 of the 4 key parts
	$\begin{array}{c} QUESTION \ I\\ k = 7\\ \hline \\ k = 7\\ \hline \\ a + \beta + \gamma = 0\\ \hline \\ a\beta + a\gamma + \beta\gamma = -\frac{3}{2}\\ \hline \\ a\beta\gamma = 2\\ \hline \\ (a + \beta + \gamma)^2 = (a + \beta)^2 + 2\gamma(a + \beta) + \gamma^2\\ (a + \beta + \gamma)^2 = a^2 + \beta^2 + 2a\beta + 2a\gamma + 2\beta\gamma + \gamma^2\\ \hline \\ a^2 + \beta^2 + \gamma^2 = (a + \beta + \gamma)^2 - 2(a\beta + a\gamma + \beta\gamma)\\ = (0)^2 - 2\left(-\frac{3}{2}\right)\\ = 3\\ 2x^4 - 10x^3 + 12x^2 + 2x - 3 = (x^2 - 2x + 1)(2x^2 - 6x - 2) + 4x - 1\\ A(x) = 2x^2 - 6x - 2\\ R(x) = 4x - 1\\ \hline \\ Test for n = 1\\ LHS = \frac{1}{(1+1)(1+2)} \qquad \qquad$	$\begin{array}{c c} QUESTION I \\ \hline \\ k = 7 \\ \hline \\ k = 7 \\ \hline \\ k = 7 \\ \hline \\ \hline \\ a + \beta + \gamma = 0 \\ \hline \\ a \beta + a \gamma + \beta \gamma = -\frac{3}{2} \\ \hline \\ a \beta \gamma = 2 \\ \hline \\ (a + \beta + \gamma)^2 = (a + \beta)^2 + 2\gamma(a + \beta) + \gamma^2 \\ (a + \beta + \gamma)^2 = a^2 + \beta^2 + 2a\beta + 2a\gamma + 2\beta\gamma + \gamma^2 \\ \hline \\ a^2 + \beta^2 + \gamma^2 = (a + \beta + \gamma)^2 - 2(a\beta + a\gamma + \beta\gamma) \\ = (0)^2 - 2(-\frac{3}{2}) \\ = 3 \\ \hline \\ 2x^4 - 10x^3 + 12x^2 + 2x - 3 = (x^2 - 2x + 1)(2x^2 - 6x - 2) + 4x - 1 \\ \hline \\ A(x) = 2x^2 - 6x - 2 \\ R(x) = 4x - 1 \\ \hline \\ \hline \\ Test for n = 1 \\ LHS = \frac{1}{(1 + 1)(1 + 2)} \\ = \frac{1}{6} \\ \therefore true for n = 1 \\ Assume true for n = k \\ ie. \frac{1}{2x^3} + \frac{1}{3x^4} + \frac{1}{4x^5} + \dots + \frac{1}{(k + 1)(k + 2)} = \frac{k}{2(k + 2)} \\ \hline \\ Prove true for n = k \\ ie. \frac{1}{2x^3} + \frac{1}{3x^4} + \dots + \frac{1}{(k + 1)(k + 2)} + \frac{1}{(k + 2)(k + 3)} = \frac{k + 1}{2(k + 3)} \\ \hline \\ LHS = \frac{1}{2(k + 2)} \frac{k(k + 3)}{(k + 3)} + \frac{2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3)}{(k + 3)} + \frac{2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{1}{2(k + 2)} \frac{k(k + 3) + 2}{(k + 3)} \\ = \frac{k + 1}{2(k + 3)} \\ \end{bmatrix}$ If it is true for n = k, then it is also true for n = k + 1. \\ \hline \end{cases}

	Solution	Mks	Comments
	QUESTION 2		
2a.	$P(x) = (x^{2} - 4)Q(x) + 3x - 1$ $P(x) = (x + 2)(x - 2)Q(x) + 3x - 1$ $P(-2) = (-2 + 2)(-2 - 2)Q(x) + 3(-2) - 1$ $P(-2) = -7$ <i>ie.</i> $R(-2) = 3(-2) - 1 = -7$	2	 2 mark Correct solution. 1 mark Significant attempts to use the remainder theorem
2b.	$P(x) = a(x + 1)^{2}(x - 3)^{3}$ At (2,1) $1 = a \times 2^{2}(2 - 3)^{3}$ $a = -\frac{1}{9}$ $P(x) = -\frac{1}{9}x^{2}(x - 3)^{3}$		2 marks • Correct solution 1 mark • Correctly identifies $P(x) = (x + 1)^2 (x - 3)^3$
2c (i)	Let the roots be α, β and $\alpha + \beta$ Sum of roots: $\alpha + \beta + (\alpha + \beta) = -k$ $2(\alpha + \beta) = -k$ $(\alpha + \beta) = -\frac{k}{2}$ Since $\alpha + \beta$ is a root, then $-\frac{k}{2}$ is a root	2	2 marks • Correct solution 1 mark • Correctly identifies sum of roots = $-a$ • Identify the third root as $\alpha + \beta$
2c.(ii)	Since $-\frac{k}{2}$ is a root, then $\left(-\frac{k}{2}\right)^3 + k\left(-\frac{k}{2}\right)^2 + 1 = 0$ $-\frac{k^3}{8} + \frac{k^3}{4} = -1$ $k^3 = -8$ k = -2		2 marks • Correct solution 1 mark • Correctly identifies $-\frac{k}{2}$ is a root
2d	$P(1) = 1^{2n} - 1^{n} + n^{n} - (1n)^{n}$ = 1 - 1 + n ⁿ - n ⁿ = 0 : (x - 1) is a factor $P(n) = n^{2n} - n^{n} + n^{n} + (n \times n)^{n}$ = n^{2n} - n ⁿ + n ⁿ + (n ²) ⁿ = 0 : (x - n) is a factor : (x - 1)(x - n) is a factor of P(x)		 2 marks Correct solution 1 mark Correctly proves one factor.

	Solution	Mks	Comments
За.	If $P(x)$ is odd, it must pass through the origin. Since $P(x)$ has a double root at $x = 2$, then $(x - 2)^2$ is a factor. Since $P(x)$ is odd, $(x + 2)^2$ is also a factor. $\therefore P(x) = ax(x - 2)^2(x + 2)^2$ If the gradient of the tangent -6 at $x = 1$ then $P'(1) = -6$ $P(x) = ax(x^2 - 4)^2$ $P(x) = ax(x^4 - 8x^2 + 16)$ $P(x) = ax^5 - 8ax^3 + 16ax$ $P'(x) = 5ax^4 - 24ax^2 + 16a$ P'(1) = 5a - 24a + 16a -6 = -3a a = 2 $\therefore P(x) = 2x(x - 2)^2(x + 2)^2$	3	 -Recognises it passes the origin. ie. a factor of <i>x</i>. -Recognises (x - 2)²(x + 2)² is a factor. -Recognises a factor of <i>a</i>. Finds the derivative Uses derivative to solve for <i>a</i> 3 marks Correct Solution. 2 mark Successfully does 2 parts. 1 mark Successfully does 1 parts.
3b.(i)	-2 2 x	2	 2 marks Correct answer. 1 mark Correct graph without any intercepts.
3b (ii)	$P'(x) = 4x^{3} - 8x$ Stationary point when $P'(x) = 0$ $0 = 4x(x^{2} - 2)$ $x = 0, \sqrt{2}, -\sqrt{2}$ P(0) = 0 $P(\sqrt{2}) = \sqrt{2}^{4} - 4\sqrt{2}^{2}$ = -4 $P(-\sqrt{2}) = (-\sqrt{2})^{4} - 4(-\sqrt{2})^{2}$ = -4	2	 2 marks Correct solution 1 mark Finds all stationary points without <i>y</i>-values
3b.(iii)	k < 0 or $k = 4$	2	 2 marks Correct solution 1 mark One region correct.

	Solution	Mks	Comments
3c	$\frac{\text{Test for } n = 1}{LHS = 1^3 - 1}$		There are 4 key parts of the induction;
	= 0 Since 0 is divisible by 6 \therefore true for $n = 1$		1. Proving the result true for $n = 1$
	<u>Assume true for $n = k$</u> <i>ie.</i> $k^3 - k = 6P$ where <i>P</i> is a positive integer		 Clearly stating the assumption and what is to be proven
	Prove true for $n = k + 1$ Aim: $(k + 1)^3 - (k + 1) = 6Q$ where <i>P</i> is a positive integer		3. Using the assumption in the proof
	$LHS = (k + 1)^{3} - (k + 1)$ = $k^{3} + 3k^{2} + 3k + 1 - k - 1$ = $k^{3} + 3k^{2} + 2(k^{3} - 6P)$ if the assumption is true = $3k^{3} + 3k^{2} - 12P$		4. Correctly proving the required statement (must explain why k(k + 1) = 2M)
	$= 3k^{2}(k + 1) - 12P$ $\therefore k(k + 1) = 2M \text{ since } k \text{ and } (k + 1) \text{ are consecutive number,}$ one of them must be even.		 3 marks Successfully does all of the 4 key parts 2 marks Successfully does 3 of
	$LHS = 3k \times 2M - 12P$ = 6(km - 2P) where (km - 2P) is an integer $\therefore (k + 1)^3 - (k + 1)$ is divisible by 6.		 the 4 key parts 1 marks Successfully does 2 of the 4 key parts
	If it is true for $n = k$, then it is also true for $n = k + 1$. By Induction, since it is true for $n = 1$, then it is also true for $n = 2, 3, 4$ all positive integer of n		Note: Without using the assumption, it is not the process of mathematical induction