GIRRAWEEN HIGH SCHOOL

MATHEMATICS

YEAR 12 Extension 1 HSC

Task 1, 2014

Time Allowed: 90 minutes

Instructions:

- Attempt all questions
- Fill in the circle on the multiple choice answer sheet next to the best response for the questions in Part A
- Start each question in Part B on a new page
- All necessary working must be shown
- Marks may be deducted for careless or badly arranged work

PART A (5 marks)

For questions 1-5 circle the best response from the following:

Question 1: The coefficient of x^4 in the expansion $\left(x - \sqrt{2}\right)^6$ is: A) -30 B) 30 C) -60 D) **Question 2:** The middle term of the expansion $\left(1 + \frac{3x}{4}\right)^6$ is:

A) $540x^3$ B) $\frac{1215}{4^4}x^4$ C) $\frac{540}{64}x^3$ D) $1215x^4$

Question 3: If $\angle BCD$ is equal to θ then $\angle ABC$ is equal to:

B)

Question 4: If n = k is $1 + 2 + 4 + ... + 2^{k-1} = 2^k - 1$ then n = k + 1 is:

D)
$$1+2+4+...+2^{k-1}+2^k = 2^k - 1$$

 $180 + \theta$

D)

180

Question 5: The value of *x* is:

A) $180 - \theta$

A)

A) 120° B) 80° C) 60° D) 40°

al to θ then $\angle ABC$ is equal to D A B B C

C)

 $1+2+4+...+2^{k-1}+2^{k+2}=2^{k-1}-1$ B) $1+2+4+...+2^{k-1}+2^{k-2}=2^{k+1}-1$

 θ

Examiner: C. McMillan

60

Name:

PART B

Question 6 (13 marks)

(a) Prove by mathematical induction that for all positive integers

$$1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}.$$
(5)

(b) Using mathematical induction prove that for all positive integers

$$7^{2n} - 3^{3n}$$
 is divisible by 11. (4)

(c) Show by the principle of mathematical induction that $n! > 2^n$ for n > 3. (4)

Question 7 (16 marks) Draw all diagrams in your answer booklet.

(a) DE is a diameter of the circle. DG is a tangent. If $\angle EDF = 37^{\circ}$ calculate the size of $\angle EGD$, giving reasons. (4)

(b) The diagonal BD of the quadrilateral ABCD, bisects $\angle ABC$. Prove that diagonal AC is parallel to the tangent at D. (6)

(c) AB and AD are tangents to the circles. DEB is a straight line. Prove that ABCD is a cyclic quadrilateral.

(6)

Question 8 (13 marks)

- (a) Find the 4th term in the expansion $\left(\frac{m}{2} + 3n\right)^8$. (2)
- (b) Find the coefficient of x^5 in the expansion of $(2-x)^7$. (2)
- (c) In the expansion $\left(x \frac{1}{x}\right)^6 \left(x + \frac{1}{x}\right)^8$, find the coefficient of x^{-8} . (4)

(d) In the expansion $(2+3x)^n$, the coefficients of x^3 and x^4 are in the ratio 8:15. Find n.

Question 9 (15 marks)

- (a) Find in the expansion $(5+2x)^{12}$:
 - i) The ratio $\frac{T_{k+1}}{T_k}$, showing all necessary working. (4)
 - ii) The greatest coefficient. (2)
 - iii) The greatest term when $x = \frac{1}{2}$. (3)
- (b) Find *n* if the coefficients of the second, third and fourth terms in the expansion of $(1+x)^n$ are successive terms of an arithmetic series. (6)

Question 10 (14 marks)

Draw diagrams in your answer booklet

(5)

- (a) ABCD is a parallelogram. AD and QE are produced to meet at R. PQ and BE are chords.
 - (i) Prove that APQR is a cyclic quadrilateral. (6)
 - (ii) Hence, show that $\angle PCD = \angle DRQ$. (2)

(b) PQ is a chord of the circle with centre O. OR is parallel to PQ. Prove that $\angle RSQ$ is three times the size of $\angle RPQ$. (6)

END OF EXAMINATION ©

•

YEARII HSC EXTI TASKI 2014.

·	QI B	b) $7^{2n} - 3^{3n}$ (÷11.).
	Q2 C	Show true for n=1
	Q3 B.	$7^2 - 3^3$
	Q4 C	= 49-27
	QS A.	= 22.
		True for n=1.
<u></u>	Question6.	Assume true for n=k.
	a) $1+4+7+\ldots+(3n-2)=n(3n-1)$	$7^{2k} - 3^{3k} = 11P$ (Pip an integer)
	2.	$7^{2k} = 11P + 3^{3k}$
	Show true for n=1.	Show true for n=k+1.
	$L4S = I \qquad R4S = I(3-I)$	$7^{2(k+1)} - 3^{3(k+1)} = 110$
	2,	(Q is an integer)
	= 1,	$LHS = 7^{2k+2} - 3^{3k+3}$
	:. True for n=1.	$= 7^2 \times 7^{2k} - 3^3 \times 3^{5k}$
	Assume true for n=k.	$= 49(11P+3^{3k}) - 3^{3}\times 3^{3k}$
	1 + 4 + 7 + + (3k - 2) = k(3k - 1)	$= 49 \times 110 + 49 \times 3^{3k} - 27 \times 3^{3k}$
	2.	$= 49 \times 110 + 22 \times 3^{3k}$
	Prove true for n=k+1	$= 11(49P + 2\times 3^{3k})$
	++++7++ (3k-2)+(3k+1)	= 11 Q.
	=(k+1)(3k+2)	: If true for n=k then true
	<i>ୟ</i> .	for $n=k+1$.
<u></u>	LHS= 1+4+7+ + (3k-2)+ (3k+1)	By the principle of
	= k(3k-1) + (3k+1)	mathematical induction true
	2	for all n>1.
	$=\frac{1}{2}[k(3k-1)+6k+2].$	
	$= \perp (3k^2 - k + 6k + 2)$	
	2 ` ,	·····
	$=\frac{1}{2}(3k^{2}+5k+2)$	
	$=\frac{1}{2}(k+1)(3k+2)$	
	= RHS.	
	-: If true for n=k then true	
	for n=k+1. " (+ 1 -).	
	" By the principle of mathematice	d l
	manches mul for an 1121.	

Question 6 cont. c) $n! > 2^n$ n > 3. $b) \angle E DA = x$ Show true for n=4. (Lin be alternate segment) LHS = 4! RHS = 2^4 = 24 = 16. LFDC = x. (2 in the alternate segment) -- 24>16 L DCA = >C - True for n=4. (2 in the alternate segment) Assume true for n=k. LDAC = x $k! > 2^k$ (Lin the alternate segment) Prove true for n=k+1. . LEDA = LOAC = DC. $\frac{1}{k} (k+1)! > 2^{k+1}.$ (alternate L's equal) LHS = (k+i)!= (k+1)k! $> (k+1) \times 2^{k}$ c) Let LADB = >c, LABE = y. $> 2 \times 2^{k} (a \times k > 3)$ = 2^{k+1} . LDCE = sc. (Lin the alternate segment) $(k+i)! > (k+i)2^k > 2^{k+1}$ LECB = Y. (~ in the alternate segment) ... If true for n=k then $\angle DAB = 180 - (2014)$ true for n=k+1 :. By the principle of (2 sum of a A) -: LDAB + LDCB = 180 - (X+4) + (X+4) mathematical induction true for all n>3. = 180 (supplementary). -'- ABCD is a cyclic guadrilateral Question 7 a) LFDG = 90 - 37as opposite angles are supplementary. (tangent 1 to radius at point of) = 53 $\angle DEF = 53^{\circ}$ (Lin the alternale segment) $\angle EGD = 180 - (53 + 90)$ (L sum of a D) = 37

 $\frac{Question 8}{a) T_4 = 8c_2 \left(\frac{m}{2}\right)^5 \left(\frac{3n}{3}\right)^3}$ Question 8. cont d) $T_4 = n_{c_2} 2^{n-3} (3x)^3$. $T_5 = \frac{n_c}{4} 2^{n-4} (3x)^4$ $= \frac{8}{3} \times \frac{m^5}{32} \times \frac{27n^3}{32}$ $= \frac{27}{32} \times \frac{8}{5} m^5 n^3$ $\frac{n_{c_3} 2^{n-3} 3^3}{n_{c_4} 2^{n-4} 3^4} = \frac{8}{15}$ b) $7_{c} 2^{2} (-\infty)^{5}$ $\frac{n_{c_3}}{2} = \frac{2}{3} = \frac{8}{15}$ $= -84 x^{5}$ nc4 ... The coefficient is -84 $\frac{4}{n-3} \times \frac{2}{3} = \frac{8}{15}$ c) $(x-\frac{1}{x})^{b}$ = $\frac{b}{c}x^{b} - \frac{b}{c}x^{2} + \frac{b}{c}x^{2} - \frac{b}{c} + \frac{b}{c}x^{2} - \frac{1}{c^{3}} - \frac{8}{3(n-3)} = \frac{8}{15}$ $-b_{C} x^{-4} + b_{C} - b$ (1, 3(0-3) = 15)n-3=5. $\left(\chi + \frac{1}{2}\right)^{8}$ Question 9 (a): $(5+2x)^{12}$. i) $T_{k+1} = 12 \quad 5^{12-b} (2z)^{k}$. k $= \frac{8}{2} - \frac{1}{2} + \frac{$ $+ \frac{8}{4} + \frac{8}{5} + \frac{2}{5} + \frac{8}{5} + \frac{2}{5} + \frac{8}{5} + \frac{2}{5} + \frac{8}{5} + \frac{2}{5} + \frac{8}{5} + \frac{$ $\frac{k}{T = 12} \frac{5^{13-k}}{5^{13-k}} (2s)^{k-1}$: Coefficient x $= \left(\begin{array}{c} 8c \times b_{c} \\ 5 & b \end{array} \right) + \left(\begin{array}{c} 8c \times \left(\begin{array}{c} -b_{c} \\ 5 \end{array} \right) \right)$ $\frac{1}{T_{k+1}} = \frac{1^{2}C_{k}}{5} \frac{5^{12-k}}{2} \frac{2^{k}C_{k}}{2} \frac{k}{2} \frac{k$ $+(8c_{x} \times c_{z})+(8c_{x} \times (-6))$ = 12! = 56-168+120-20 = k! (12-k)! x 2 x-= -12.... The coefficient is -12. (k-1)! (13-k)!

Question 9 cont.

 $ii) = (13+k) \times \frac{2}{5} \times \frac{1}{5}$ c) $T_2 = n_c x T_3 = n_c x^2$ = -2(13-k) x. $T_4 = n_{c_2} \chi^3$ $\frac{26-2k}{5k} > 1$ $T_3 - T_2 = T_4 - T_3$ $\frac{n_c - n_c}{2} = \frac{n_c - n_c}{3}$ 5k < 26 - 2k $\frac{n!}{2!(n-2)!} - \frac{n!}{(n-1)!} = \frac{n!}{3!(n-3)!} - \frac{n!}{2!(n-2)!}$ k<3.7 : k=3. :. The greatest coefficient $T_{4} = 12 52$ $\frac{n!(n-3)}{2!(n-1)!} = \frac{n!(n-5)}{3!(n-2)!}$ $\frac{111}{5k} = \frac{2(13-k) \times 1}{5k}$ $\frac{5k}{2}$ $\frac{11}{5k} = \frac{1}{2}$ $\therefore 3n!(n-3) = n!(n-1)(n-5)$ 3(n-3) = (n-1)(n-5) $3n - 9 = n^2 - 6n + 5$ $n^2 - 9n + 14 = 0$ 2(13-k) 2 >1. (n-7)(n-2)=0.5k 13-k > 5k. 2.0 = 7.1376k i. k< 2.1. : k=2 $T_3 = \frac{12}{2} c_5 \frac{5}{2} \left(\frac{1}{2}\right)^2$ $= 12_{c_{2}} 5^{10}$

(

Question 10. a)i)Let LPCD = oc. : LRSQ = 2x+x $\angle BPC = DC$ (exterior L of a D) (alternate L's, ABIIDC) = 3x Let ZPBE = y (6) $-\frac{y}{y} = 3x$. LPRE=y. (L'S subtended at circumference by) arc PE) LBAD = 180-4 (CO-interior L'S, BC/ AD) \therefore LBAD + $\angle P \oslash E = 180$. (supplementary). ... APQR is a cyclic guadrilateral. (opposite L's are supplementary) ii) $\angle APC = 180 - 5C$ (straight 2) -. LDRQ =x (opposite L's of a cyclic quadrilateral) = LPCD = LDRQ b) Let LRSQ =4 and LRPQ = x. LROQ = 2x. (2 at the centre is twice 1 at the - Circumference on the same arc) LORS =x (alternate L's OR/1PQ.