GIRRAWEEN HIGH SCHOOL
 MATHEMATICS

YEAR 12 Extension 1 HSC
Task 1, 2014

Time Allowed: 90 minutes Instructions:

Name: \qquad
Examiner: C. McMillan

- Attempt all questions
- Fill in the circle on the multiple choice answer sheet next to the best response for the questions in Part A
- Start each question in Part B on a new page
- All necessary working must be shown
- Marks may be deducted for careless or badly arranged work

PART A (5 marks)

For questions 1-5 circle the best response from the following:

Question 1: \quad The coefficient of x^{4} in the expansion $(x-\sqrt{2})^{6}$ is:
A) -30
B) 30
C) $\quad-60$
D) 60

Question 2: \quad The middle term of the expansion $\left(1+\frac{3 x}{4}\right)^{6}$ is:
A) $540 x^{3}$
B) $\frac{1215}{4^{4}} x^{4}$
C) $\frac{540}{64} x^{3}$
D) $\quad 1215 x^{4}$

Question 3: If $\angle B C D$ is equal to θ then $\angle A B C$ is equal to:

A) $180-\theta$
B)
θ
C) $180+\theta$
D) 180

Question 4: If $n=k$ is $1+2+4+\ldots+2^{k-1}=2^{k}-1$ then $n=k+1$ is:
A) $1+2+4+\ldots+2^{k-1}+2^{k+2}=2^{k-1}-1$
B) $1+2+4+\ldots+2^{k-1}+2^{k-2}=2^{k+1}-1$
C) $1+2+4+\ldots+2^{k-1}+2^{k}=2^{k+1}-1$
D) $1+2+4+\ldots+2^{k-1}+2^{k}=2^{k}-1$

Question 5: The value of x is:

A)
120°
B) $\quad 80^{\circ}$
C) 60°
D) $\quad 40^{\circ}$

PART B

Question 6 (13 marks)

(a) Prove by mathematical induction that for all positive integers
$1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$.
(b) Using mathematical induction prove that for all positive integers
$7^{2 n}-3^{3 n}$ is divisible by 11 .
(c) Show by the principle of mathematical induction that $n!>2^{n}$ for $n>3$.

Question 7 (16 marks) Draw all diagrams in your answer booklet.

(a) DE is a diameter of the circle. DG is a tangent. If $\angle E D F=37^{\circ}$ calculate the size of $\angle E G D$, giving reasons.

(b) The diagonal BD of the quadrilateral ABCD , bisects $\angle A B C$. Prove that diagonal AC is parallel to the tangent at D.

(c) $A B$ and $A D$ are tangents to the circles. $D E B$ is a straight line. Prove that $A B C D$ is a cyclic quadrilateral.

Question 8 (13 marks)

(a) Find the $4^{\text {th }}$ term in the expansion $\left(\frac{m}{2}+3 n\right)^{8}$.
(b) Find the coefficient of x^{5} in the expansion of $(2-x)^{7}$.
(c) In the expansion $\left(x-\frac{1}{x}\right)^{6}\left(x+\frac{1}{x}\right)^{8}$, find the coefficient of x^{-8}.
(d) In the expansion $(2+3 x)^{n}$, the coefficients of x^{3} and x^{4} are in the ratio 8:15.

Find n.

Question 9 (15 marks)

(a) Find in the expansion $(5+2 x)^{12}$:
i) The ratio $\frac{T_{k+1}}{T_{k}}$, showing all necessary working.
ii) The greatest coefficient.
iii) The greatest term when $x=\frac{1}{2}$.
(b) Find n if the coefficients of the second, third and fourth terms in the expansion of $(1+x)^{n}$ are successive terms of an arithmetic series.

Question 10 (14 marks)

(a) $A B C D$ is a parallelogram. $A D$ and $Q E$ are produced to meet at R. $P Q$ and $B E$ are chords.
(i) Prove that APQR is a cyclic quadrilateral.
(ii) Hence, show that $\angle P C D=\angle D R Q$.

(b) PQ is a chord of the circle with centre O . OR is parallel to PQ . Prove that $\angle R S Q$ is three times the size of $\angle R P Q$.

Yearll HSC Ext TaSk 2014.

QI B
Q2 C
Qu B
Qu C
QL A.

Question 6
a) $1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$

Show true for $n=1$.

$$
\begin{aligned}
L H S=1 \quad \text { RUS } & =\frac{1(3-1)}{2} \\
& =1 .
\end{aligned}
$$

\therefore True for $n=1$.
Assume true for $n=k$.

$$
\therefore 1+4+7+\ldots+(3 k-2)=\frac{k(3 k-1)}{2}
$$

Prove true for $n=k+1$

$$
\begin{aligned}
& \therefore 1+4+7+\cdots+\frac{(3 k-2)+(3 k+1)}{2} \\
& =\frac{(k+1)(3 k+2)}{2} \\
& \text { LIS }=1+4+7+\cdots+(3 k-2)+(3 k+1) \\
& =\frac{k(3 k-1)}{2}+(3 k+1) . \\
& =\frac{1}{2}[k(3 k-1)+6 k+2] . \\
& =\frac{1}{2}\left(3 k^{2}-k+6 k+2\right) \\
& =\frac{1}{2}\left(3 k^{2}+5 k+2\right) \\
& =\frac{1}{2}(k+1)(3 k+2) \\
& =
\end{aligned}
$$

\therefore If true for $n=k$ then true for $n=k+1$.
\therefore By the principle of mathematical induction true for all $n \geqslant 1$.
b) $7^{2 n}-3^{3 n} \quad(\div 11)$.

Show true for $n=1$

$$
\begin{aligned}
& 7^{2}-3^{3} \\
& =49-27 \\
& =22 .
\end{aligned}
$$

\therefore True for $n=1$.
Assume true for $n=k$.

$$
\begin{aligned}
& 7^{2 k}-3^{3 k}=11 P \\
& 7^{2 k}=11 P+3^{3 k}
\end{aligned}
$$

Show true for $n=k+1$.

$$
\begin{aligned}
& 7^{2(k+1)}-3^{3(k+1)}=11 Q \\
& \text { LHS } \left.=7^{2 k+2}-3^{3 k+3} \text { is an integer }\right) \\
& =7^{2} \times 7^{2 k}-3^{3} \times 3^{3 k .} \\
& =49\left(11 P+3^{3 k}\right)-3^{3} \times 3^{3 k} \\
& =49 \times 11 P+49 \times 3^{3 k}-27 \times 3^{3 k} \\
& =49 \times 11 P+22 \times 3^{3 k} \\
& =11\left(49 p+2 \times 3^{3 k}\right) \\
& =11 Q .
\end{aligned}
$$

\therefore If true for $n=k$ then true for $n=k+1$.
\therefore By the principle of mathematical induction true for all $n \geqslant 1$.

Question 6 cont.
c) $n!>2^{n} \quad n>3$

Show true for $n=4$.

$$
\begin{array}{rlr}
\text { LHS }=4!\quad R U S & =2^{4} \\
& =24 & =16 . \\
\therefore 24>16 &
\end{array}
$$

\therefore True for $n=4$.
Assume true for $n=k$.

$$
\therefore k!>2^{k}
$$

Prove true for $n=k+1$.

$$
\begin{aligned}
& \therefore(k+1)!>2^{k+1} \\
& \angle H S=(k+1)! \\
& \quad=(k+1) k! \\
& \quad>(k+1) \times 2^{k} \\
& \quad>2 \times 2^{k}(\text { as } k>3) \\
& \\
& =2^{k+1}
\end{aligned}
$$

$\therefore(k+1)!>(k+1) 2^{k}>2^{k+1}$
\therefore If true for $n=k$ then true for $n=k+1$
\therefore By the principle of mathematical induction true for all $n>3$.

Question 7
a) $\angle F D C=90-37$
(tangent 1 to radius at point of $)$

$$
=53^{\circ}
$$

$$
\angle D E F=53^{\circ}
$$

(\angle in the alternate segment)

$$
\angle E G D=180-(53+90)
$$

$$
(\angle \text { sum of } a \Delta)
$$

$$
=37^{\circ}
$$

Question 8
a)

$$
\begin{aligned}
T_{4} & ={ }_{C_{c}}\left(\frac{m}{2}\right)^{5}(3 n)^{3} \\
& ={ }_{8} c_{3} \times \frac{m^{5}}{32} \times 27 n^{3} \\
& =\frac{27}{32} \times{ }_{c_{c}} m^{5} n^{3}
\end{aligned}
$$

b) $7_{5} 2^{2}(-x)^{5}$

$$
=-84 x^{5}
$$

\therefore The coefficient is -84 .

$$
\therefore \text { Coefficient } x^{-8}
$$

$$
=\binom{8_{c} \times b_{c}}{b_{b}}+\binom{8_{c}}{{ }_{6}}\left(\begin{array}{c}
-6 \\
{ }^{-6} \\
c_{5}
\end{array}\right)
$$

$$
+\left({ }^{8} c_{7} \times{ }^{6} c_{4}\right)+\left({ }_{8} c_{8} \times\left(-{ }^{-6} c_{3}\right)\right)
$$

$$
=56-168+120-20
$$

$$
=-12 .
$$

\therefore The coefficient is -12 .

$$
\begin{aligned}
& \text { c) }\left(x-\frac{1}{x}\right)^{6} \text {. } \\
& =b_{c_{0}} x^{6}-b_{c_{1}} x^{4}+{ }_{c}^{b_{c}} x^{2}-b_{c_{3}}+{ }^{6} c_{4} x^{-2} \\
& { }^{-6} c_{5} x^{-4}+{ }_{6} c_{6} x^{-6} \\
& \left(x+\frac{1}{x}\right)^{8} \\
& ={ }_{0}^{8} x_{0} x^{8}+{ }_{8} c_{1} x^{6}+{ }_{8} c_{2} x^{4}+{ }_{8} c_{3} x^{2} \\
& +{ }^{8} c_{4}+{ }^{8} c_{5} x^{-2}+{ }^{8} c_{6} x^{-4}+{ }^{8} c^{-6} x^{-6}+{ }_{7}{ }^{-8} x^{8}
\end{aligned}
$$

Question 8. cont.

$$
\begin{aligned}
& \text { d) } T_{4}=n_{c_{3}} 2^{n-3}(3 x)^{3} \\
& T_{5}={ }^{n_{c}} 2^{n-4}(3 x)^{4} \\
& \frac{n_{c_{3}} 2^{n-3} 3^{3}}{n_{c_{4}} 2^{n-4} 3^{4}}=\frac{8}{15} \\
& \frac{n_{c_{3}}}{n_{c_{4}}} \times \frac{2}{3}=\frac{8}{15} . \\
& \frac{4}{n-3} \times \frac{2}{3}=\frac{8}{15} \\
& \therefore \frac{8}{3(n-3)}=\frac{8}{15} \\
& \therefore 3(n-3)=15 \\
& n-3=5 \text {. } \\
& \therefore n=8 \text {. } \\
& \text { Question } 9 \\
& \text { a) }(5+2 x)^{12} \text {. } \\
& \begin{array}{l}
\text { i) } T_{k+1}={ }^{12} c_{k} 5^{12-k}(2 x)^{k} \\
T_{k}={ }_{c}^{12} c_{k-1} 5^{13-k}(2 x)^{k-1}
\end{array} \\
& \begin{aligned}
\therefore \frac{T_{k+1}}{T_{k}} & =\frac{{ }^{12} c_{k} 5^{12-k} 2^{k} x^{k}}{{ }^{12} c} 5^{13-k} 2^{k-1} x^{k-1} \\
& =\frac{{ }^{12!}!}{(k-(12-k)!} \times \frac{2}{5} x \\
& \frac{12!}{(k-1)!(13-k)!}
\end{aligned}
\end{aligned}
$$

Question 9 cont.

$$
\begin{array}{rl}
\text { ii } & =\frac{(13+k)}{k} \times \frac{2}{5} x \\
& =\frac{2(13-k)}{5 k} x \\
& \frac{26-2 k}{5 k}>1 . \\
5 k<26-2 k \\
k & k 3.7 \quad \therefore k=3 .
\end{array}
$$

\therefore The greatest coefficient

$$
T_{4}={ }^{12} c_{3} 5^{9} 2^{3}
$$

iii) $\frac{2(13-k) x}{5 k}>1$.
when $x=\frac{1}{2}$.

$$
\begin{aligned}
& \frac{2(13-k)^{\frac{1}{2}}}{5 k}>1 . \\
& 13-k>5 k . \\
& 13>6 k \\
& \therefore k<2.1 . \\
& \therefore k=2 . \\
& T_{3}=12 c_{2} 5^{10} 2^{2}\left(\frac{1}{2}\right)^{2} \\
& =1 z_{c_{2}} 5^{10 .}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } T_{2}=n_{c_{1}} x \quad T_{3}=n_{c_{2}} x^{2} \\
& T_{4}=n_{c_{3}} x^{3} \\
& T_{3}-T_{2}=T_{4}-T_{3} \\
& n_{c}-n_{c_{1}}=n_{c_{3}}-n_{c_{2}} \\
& \frac{n!}{2!(n-2)!}-\frac{n!}{(n-1)!}=\frac{n!}{3!(n-3)!}-\frac{n!}{2!(n-2)!} \\
& \frac{n!(n-3)}{2!(n-1)!}=\frac{n!(n-5)}{3!(n-2)!}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & 3 n!(n-3)=n!(n-1)(n-5) \\
& 3(n-3)=(n-1)(n-5) \\
& 3 n-9=n^{2}-6 n+5 \\
& n^{2}-9 n+14=0 \\
& (n-7)(n-2)=0 . \\
\therefore & n=7 .
\end{aligned}
$$

Question 10.
a)) Let $\angle P C D=x$

$$
\angle B P C=x
$$

(alternate $\angle ' s, A B \| D C$)
Let $\angle P B E=y$.

$$
\angle P Q E=y .
$$

('s subtended at circumference by)

$$
\angle B A D=180-y
$$

(co-interior \angle 's,$B C \| A D)$.

$$
\therefore \angle B A D+\angle P Q E=180 .
$$

(supplementary).
$\therefore A P Q R$ is a cyclic
quadrilateral.
(opposite L's are supplementary)
ii) $\angle A P C=180-x$ (straight \angle)

$$
\therefore \angle D R Q=x
$$

(opposite \angle 's of a cyclic quadrilateral)

$$
\therefore \angle P C D=\angle D R Q \text {. }
$$

b) Let $\angle R S Q=y$
and $\angle R P Q=x$

$$
\begin{equation*}
\angle R O Q=2 x . \tag{6}
\end{equation*}
$$

(\angle at tine centre is twice \angle at the -circumference on the same arc)

$$
\angle O R S=x
$$

(alternate \angle 's, $O R \| P Q$.

$$
\therefore \angle R S Q=2 x+x
$$

(exterior $<$ of $a \Delta$)

$$
=3 x
$$

$$
\therefore y=3 x \text {. }
$$

