James Ruse AHS Year 11 Extension 1 Mathematics Term4 2000

- Time allowed 85 mins
- Show all necessary working
- Start a new page for each question

Question 1 Start a new page.
Marks
(a) Write down the exact value of:
(i) $\operatorname{Sec} \frac{\pi}{4}$

1
(ii) $\sin ^{2} 2+\cos ^{2} 2$
(b) Evaluate exactly
(i) $\sin ^{-1}\left(-\frac{1}{2}\right)$

1
(ii) $\quad \cos \left(\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{4}{5}\right)$
(c) Write down the primitive function of
(i) $\frac{x}{\sqrt{x}}$
(ii) $\frac{x^{4}+1}{x^{2}}$
(iii) $\frac{4}{9+x^{2}}$

Question 2 Start a new page.
(a) (i) Show that the point of intersection of $x^{2}=4 y$ and $y^{2}=4 x$ is $(4,4) \quad 1$
(ii) The area enclosed by the parabolas $x^{2}=4 y$ and $y^{2}=4 x$ rotates about the x axis. Calculate the volume of the solid so formed.
(b) The vertex A of the parallelogram $A B C D$ is the point $(1,5)$ and the side $C D$ lies along the line $x+y=10$. One of the diagonals lies along the line $2 \mathrm{x}+\mathrm{y}=12$.
(i) Draw a diagram illustrating the above information.
(ii) Find, using algebra the co-ordinates of B and D

Question 3 Start a new page.
(a) For the general sine curve, with equation $y=a \sin (b x+c) \quad a, b, c$ constants
(i) Write down the period and the amplitude.
(ii) The graph of $y=a \sin (b x+c)$ is the same as $y=a \sin (b x)$ with a certain displacement. What is that displacement?
(b) (i) On the same diagram, draw freehand sketches of the graphs

$$
y=\sin 2 x \text { and } y=\sin 3 x \text { for } 0 \leq x \leq \pi
$$

(ii) From the graph determine how many roots of the equation $\sin 2 x=\sin 3 x$, lie in the interval $0 \leq x \leq \pi$
(c) If $\sin (x+y)=2 \sin x$, prove that $\tan x=\frac{\sin y}{2-\cos y}$

Question 4 Start a new page.
(i) Use Simpson's rule with 3 ordinates to find an approximate value of

$$
\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} d x \text { to } 2 \text { decimal places. }
$$

(ii) By differentiating $\sqrt{x^{2}+1}$, show that it is a primitive of $\frac{x}{\sqrt{x^{2}+1}}$
(iii) Hence show that $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} d x=\sqrt{2}-1$
(iv) Deduce that $\int_{0}^{1} \frac{d x}{\sqrt{x^{2}+1}}>\sqrt{2}-1$

Question 5 Start a new page.
$\mathrm{P}\left(2 p, p^{2}\right)$ and $\mathrm{Q}\left(2 q, q^{2}\right)$ lie on the parabola $x^{2}=4 y$
(a) The chord through P and Q is given by $y-\frac{(p+q) x}{2}+p q=0$ and passes through $(0,2)$.

Show that $p q=-2$
(b) Prove that the equation of the normal at P is $x+p y=p^{3}+2 p$
(c) The normals to the parabola at P and Q intersect at T . As the chord PQ moves about $(0,2)$, show that T lies on the parabola $x^{2}=4(y-4)$

Question 6 Start a new page.
A picture 3 m high is placed on a wall with the base of the picture 1 m above the level of an observer's eye. The observer stands $x \mathrm{~m}$ from the wall.
(i) Show that the angle of vision α subtended by the picture to the eye of the observer is given

2 by $\alpha=\tan ^{-1} \frac{4}{x}-\tan ^{-1} \frac{1}{x}$.
(ii) Determine how far from the wall the observer should stand in order to maximize the angle of vision α. (Answer to be fully justified)

