Marks

5

James Ruse AHS Year 11 Extension 1 Mathematics Term4 2000

- Time allowed 85 mins
- Show all necessary working
- Start a new page for each question

Question 1 Start a new page.

(a) Write down the exact value of:

(i)
$$\operatorname{Sec} \frac{\pi}{4}$$
 1

(ii)
$$\sin^2 2 + \cos^2 2$$
 1

(b) Evaluate exactly

(i)
$$\sin^{-1}(-\frac{1}{2})$$
 1

(ii)
$$\cos(\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{4}{5})$$
 2

(c) Write down the primitive function of

(i)
$$\frac{x}{\sqrt{x}}$$
 1

(ii)
$$\frac{x^4 + 1}{x^2}$$
 2

(iii)
$$\frac{4}{9+x^2}$$
 2

Question 2 Start a new page.

(a)	(i)	Show that the point of intersection of $x^2 = 4y$ and $y^2 = 4x$ is (4,4)	1
	(ii)	The area enclosed by the parabolas $x^2 = 4y$ and $y^2 = 4x$ rotates about the x axis.	3
		Calculate the volume of the solid so formed.	

- (b) The vertex A of the parallelogram ABCD is the point (1,5) and the side CD lies along the line x+y=10. One of the diagonals lies along the line 2x+y=12.
 - (i)Draw a diagram illustrating the above information.1
 - (ii) Find, using algebra the co-ordinates of B and D

Question 3 Start a new page.

.

(a)	For the	e general sine curve, with equation $y = a \sin(bx + c)$ a, b, c constants	
	(i)	Write down the period and the amplitude.	2
	(ii)	The graph of $y = a \sin(bx + c)$ is the same as $y = a \sin(bx)$ with a certain displacement. What is t	hat
		displacement?	1
(b)	(i)	On the same diagram, draw freehand sketches of the graphs	2
		$y = \sin 2x$ and $y = \sin 3x$ for $0 \le x \le \pi$	
	(ii)	From the graph determine how many roots of the equation $\sin 2x = \sin 3x$,	1
		lie in the interval $0 \le x \le \pi$	

(c) If
$$\sin(x+y) = 2\sin x$$
, prove that $\tan x = \frac{\sin y}{2 - \cos y}$ 4

Question 4 Start a new page.

(i) Use Simpson's rule with 3 ordinates to find an approximate value of 3 $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} dx \text{ to 2 decimal places.}$

(ii) By differentiating
$$\sqrt{x^2 + 1}$$
, show that it is a primitive of $\frac{x}{\sqrt{x^2 + 1}}$ 2

(iii) Hence show that
$$\int_{0}^{1} \frac{x}{\sqrt{x^2 + 1}} dx = \sqrt{2} - 1$$
 2

(iv) Deduce that
$$\int_{0}^{1} \frac{dx}{\sqrt{x^2 + 1}} > \sqrt{2} - 1$$
 3

Question 5 Start a new page.

P
$$(2p, p^2)$$
 and Q $(2q, q^2)$ lie on the parabola $x^2 = 4y$

(a) The chord through P and Q is given by
$$y - \frac{(p+q)x}{2} + pq = 0$$
 and passes through (0,2). 2

Show that pq = -2

- (b) Prove that the equation of the normal at P is $x + py = p^3 + 2p$ 4
- (c) The normals to the parabola at P and Q intersect at T. As the chord PQ moves about (0,2), show

that T lies on the parabola $x^2 = 4(y-4)$ 4

Question 6 Start a new page.

A picture 3m high is placed on a wall with the base of the picture 1m above the level of an observer's eye. The observer stands x m from the wall.

(i) Show that the angle of vision α subtended by the picture to the eye of the observer is given 2

by
$$\alpha = \tan^{-1} \frac{4}{x} - \tan^{-1} \frac{1}{x}$$
.

(ii) Determine how far from the wall the observer should stand in order to maximize **8** the angle of vision α . (Answer to be fully justified)

END OF PAPER