YEAR 11 Mathematics Extension 1 - 2005 Yearly Examination (Term 4)

Question 1.

(a) An arc of length 10 cm subtends an angle of θ radians at the centre of a circle of radius 5 cm .
Find the value of θ correct to the nearest minute.
(b) Find the equation of the curve passing through the point $(1,3)$ with a gradient function of $(x+1)(x-5)$.
(c) Find the primitive function of
(i) $2 \sin 4 x$. 2
(ii) $\frac{x+3}{x^{2}+5}$.

Question 2.

[START A NEW PAGE]
(a) The point A lies on the line $3 x+2 y=24$. A line, perpendicular to the x-axis, is drawn through point A and meets the x-axis at B.
(i) If B is $(a, 0)$, find the coordinates of A in terms of a.
(ii) The triangle bounded by the lines $A B, 3 x+2 y=24$ and the x-axis has an area of 27 square units, find the coordinates of A.
(b) (i) Given that A is $(-3,7), B$ is $(-2,12), C$ is (x, y) and D is $(2,8)$. Find the coordinates of C if $A B C D$ is a rhombus.
(ii) Hence, find the area of $A B C D$.
(c) Find the integral of $4 e^{x}+\sqrt{x}$.2

Question 3.

[START A NEW PAGE]

(a) (i) Express $\sqrt{3} \sin \theta+\cos \theta$ in the form $A \sin (\theta+\alpha)$, where $A>0$ and $0<\theta<2 \pi$.
(ii) Find the minimum value of $\sqrt{3} \sin \theta+\cos \theta$ and 2 determine when this minimum first occurs for $\theta \geq 0$.
(iii) Neatly sketch $y=\sqrt{3} \sin \theta+\cos \theta$, for $0 \leq \theta \leq 2 \pi$, clearly showing showing all important feature.
(b) Using the t-results, solve $\cos A+\sqrt{3} \sin A=-1$, for $0 \leq A \leq 2 \pi$
(a) Find the exact area bounded by $y=\cos ^{-1} x$, the x-axis and 3 the lines at $x=0$ and $x=\frac{1}{\sqrt{2}}$.
(b) Prove that $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{4}$.
(c) Find $\int_{1}^{3} \frac{(x-1)}{(x+1)^{3}} d x$, using the substitution $u=x+1$.

Question 5.

(a) If $A=\sin ^{-1}\left(\frac{5}{13}\right)$, find the value of $\sin 2 A$.
(b) Given $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y, \quad 4$ and $p+q=2 \sqrt{3}$.
Find the angle between the chord $P Q$ and the axis of the parabola.
(c) $\quad P$ is a point on $x^{2}=12 y$ and O is the Origin. Q is the foot of the perpendicular from the focus, S, of the parabola to $O P$.
Show that the locus of Q is given by $x^{2}+y^{2}-3 y=0$.

Question 6.

 [START A NEW PAGE](a) Find the inverse function of $y=3+\ln x$.
(b) Differentiate $y=\frac{1}{2} \tan ^{-1} x$ with respect to x.
(c) Neatly sketch $y=\frac{1}{2} \tan ^{-1} x$ and its derivative.
(d) Find the domain and range of $y=\sin ^{-1}\left[\frac{1}{2\left(1+x^{2}\right)}\right]$.
(e) Neatly sketch $y=\sin ^{-1}\left[\frac{1}{2\left(1+x^{2}\right)}\right]$.

74 - Bunt Soltions-2005
QUESTKN:
a)

$$
\begin{align*}
& l=r e \\
& \varepsilon^{2}=\frac{10}{5}=2 \\
& E^{2}=2 \times \frac{186}{11}=114^{\circ} 35^{\prime} \tag{1}
\end{align*}
$$

b)

$$
\begin{align*}
& M=(x+1)(x-5) \\
&=x^{2}-4 x-5 \tag{0}\\
& \therefore y=\frac{1}{3} x^{3}-2 x^{2}-5 x+c \\
& 3 b \\
& 3=\frac{1}{3}-2-5+c \\
& \therefore c=-1^{2 / 3} \\
& \therefore y=\frac{1}{3} x^{3}-2 x^{2}-5 x-\frac{5}{3}
\end{align*}
$$

c) i) $-\frac{1}{2} \cos 4 x+c$
ii) $\int\left(\frac{x}{x^{2}+5}+\frac{3}{x^{2}+5}\right) d x$

$$
=\frac{1}{2} \ln \left(x^{2}+6_{5}\right)+\frac{3}{\sqrt{5}} \operatorname{Tan}^{-1}\left(\frac{1}{\sqrt{5}}\right)+c
$$

Question 2

A lians on

$$
3 x+2 y=24
$$

$$
\therefore 3 a+2 y=24
$$

$$
2 y=24-3 a
$$

$$
y=12-3 / 2 x
$$

$$
\therefore A(a, 12-3 / 2 i)
$$

$$
\text { i) } \begin{aligned}
A & =\frac{1}{2} b h \\
27 & =\frac{1}{2}(8-a)(12-32 a) \\
54 & =96-12 a-12 a+\frac{3}{2} a^{2} \\
0 & =\frac{3}{2} a^{2}-24 a+42 \\
0 & =a^{2}-16 a+28 \\
0 & =(a-14)(a-2) \\
\therefore a & =14 \quad a=2
\end{aligned}
$$

$\therefore A(2,9)$ or $(14,-9)$ (1)

C $(3,13)$
ii) $A=\frac{1}{2} x y$

I

$$
\begin{align*}
& =\frac{1}{2}(\sqrt{16+16})(\sqrt{36+36}) \\
& =24 \text { units } \tag{1}
\end{align*}
$$

c) $\int\left(4 e^{2 x}+\sqrt{x}\right) d x$

$$
=2 e^{2 x}+2 / 3 x^{3 / 2}+c
$$

以UESTION 3
a) i) $\sqrt{3} \sin \theta+\cos \theta \equiv A \sin (\theta+\alpha)$ $=A \sin \theta \cos \alpha+A \cos \theta \alpha$

$$
\begin{aligned}
& \frac{\sqrt{3}}{A}=\cos \alpha \\
& \frac{3}{A^{2}}+\frac{1}{A^{2}}=1 \\
& A^{2}=4
\end{aligned}
$$

$$
A=2 \quad \text { as } A>0
$$

$$
\tan ^{-1} \frac{1 / 2}{\sqrt{3} / 2}=1
$$

$$
\alpha=\pi / 6
$$

$$
\therefore \sqrt{3} \sin \theta+\cos \theta=2 \sin \left(\theta+\frac{\pi}{6}\right)
$$

ii) Minimum value is -2 (1) fixst ocesrs when $\sin \left(\theta+\frac{\pi}{6}\right)=-1$

$$
\theta+\frac{\pi}{6}=\frac{3 \pi}{2}
$$

(1) $\theta=\frac{4 \pi}{3}$
iii) $y=\sqrt{3} \sin \theta+\cos \theta$

$$
\therefore y=2 \sin \left(\theta+\frac{-\pi}{6}\right)
$$

(1) for ondpoints
(1) intercepts
(1) rangelshape
b) $\cos A+\sqrt{3} \sin A=-1$
check for $A=\pi$

$$
\begin{gathered}
\cos \pi+53 \sin \pi=-1 \\
-1+0=-1
\end{gathered}
$$

true
$\therefore \pi=A$ is a soln.

$$
\begin{align*}
1-t^{2}+2 \sqrt{3} t & =-1-t^{2} \\
2 \sqrt{3} t & =-2 \\
t & =\frac{-1}{\sqrt{3}} \tag{1}\\
\therefore \tan \frac{A}{2} & =-\frac{1}{\sqrt{3}} \\
\frac{A}{2} & =\frac{5 \pi}{6} \\
\therefore A & =\frac{5 \pi}{3} \tag{1}
\end{align*}
$$

\therefore Soln. set is $A=\frac{5 \pi}{3}$ ar π
QUESTION 4

$$
\begin{align*}
\text { Area } & =\int_{0}^{\frac{1}{5}} \cos ^{-1} x d x \\
& =\int_{\frac{\pi}{4}}^{\pi / 2} \cos y d y+\left(\frac{1}{\sqrt{2}}+\frac{\pi}{4}\right) \tag{10}\\
& =[\sin y]_{\pi / 4}^{\pi / 2}+\frac{\pi}{4 \sqrt{2}} \\
& =\sin \pi / 2-\sin \pi / 4+\frac{\pi}{4 \sqrt{2}} \\
& =\left(1-\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}\right) \text { units }^{2}
\end{align*}
$$

b)

$$
\tan \frac{\pi}{4}=\tan (A+B)
$$

whare $A=\tan ^{-1}\left(\frac{1}{3}\right) \& \quad B=\tan ^{-1}\left(\frac{1}{2}\right)$ $\tan A=\frac{1}{3} \quad \therefore 0<A<\pi / 4$
$\tan B=\frac{1}{2} \quad 0<B<\pi / 4$

$$
\begin{aligned}
R H S & =\tan (A+B) \\
& =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& =\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3} \times \frac{1}{2}}=\frac{\frac{5}{6}}{\frac{5}{6}} \\
& =1
\end{aligned}
$$

$$
\begin{array}{rl}
\therefore \quad \tan \pi / 4 & =1 \\
\tan ^{-1} & 1
\end{array}=\pi / 4
$$

$$
\therefore \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{2}\right)=\pi / 4
$$

c) $\int_{1}^{3} \frac{x-1}{(x+1)^{3}} d x$

$$
u=x+1
$$

$$
\frac{d v}{d x}=1
$$

when $\quad x-1, u=2$

$$
\begin{aligned}
& x=3, u=4 \\
& 0 \int_{2}^{4} \frac{u-2}{u^{3}} d u=\int_{2}^{4}\left(u^{-2}-2 u^{-3}\right) d u \\
&=\left[\frac{-1}{4}+\frac{1}{2} u^{-4}\right]_{2}^{4} \\
&=\left(-\frac{1}{4}+\frac{1}{25 i}\right)-\left(-\frac{1}{2}+\frac{1}{32}\right) \\
&=-\frac{63}{256}+\frac{15}{32} \\
&=\frac{57}{256}
\end{aligned}
$$

QNESTRON
a) $A=\sin ^{-1}\left(\frac{5}{13}\right)$
$\sin A=\frac{5}{13}$ for $-\frac{\pi}{2} \leqslant A \leqslant \pi / 2$
b ot $\sin A>0, \therefore 0 \leq A \leq \pi / 2$

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
& =2\left(\frac{5}{13}\right)\left(\frac{12}{13}\right) \\
& =\frac{120}{169}
\end{aligned}
$$

(1) b)

$$
\begin{aligned}
& m=\tan \alpha \\
& \therefore \quad \begin{aligned}
& \operatorname{an}\left(q^{2}-p^{2}\right) \\
& 2 a(q-p)
\end{aligned}=\tan \alpha(1) \\
& \frac{p+q}{2}=\tan \alpha \\
& \frac{2}{2}=\tan \alpha \quad(a \operatorname{s} p+q-2) \\
& 1=\tan \alpha \\
& \therefore \alpha=\frac{\pi}{4}
\end{aligned}
$$

(1) $\angle A O M=\frac{\pi}{2} \quad \begin{gathered}(y \text {-acis is } \\ \text { perpenticalor to }\end{gathered}$ perpenticalar to
$x-a \times i s)$
 of $\pi / 4$ with the axis of parabola $x^{2}=4 a y$.
\rightarrow
cop. of $S Q$ is: $y-3=-\frac{2}{p}<$

$$
y=-\frac{2}{p} x+3.6
$$

solue (1) (2) tr get $\dot{\alpha}$

io Lacus of α is $14=$ nicile $x^{2}+j^{2} \cdot 3 n-011$ with cienter $(0,1 / 2)$, railises 3_{2}.

QUESTION
(A) $y=3+\operatorname{lo} x$
inverse is $x=3110 y$

$$
\begin{align*}
& x-3=\operatorname{lrus} \\
& \therefore y=e^{x-3} \tag{1}
\end{align*}
$$

b) $\begin{aligned} y & =\frac{1}{2} \tan ^{-1} x \\ \frac{d y}{d x} & =\frac{1}{2\left(1+x^{2}\right)}\end{aligned}$
c) $y=\frac{1}{2} \tan ^{-1} x$

$$
\frac{p}{2} x=-\frac{2}{p} x+3
$$

$$
x\left(\frac{p}{2}+\frac{2}{p}\right)=3
$$

$$
x\left(\frac{p^{2}+4}{2 p}\right)=3
$$

$$
\begin{aligned}
\therefore x & =\frac{6 p}{p^{2}+4} \\
\therefore y & =\frac{p}{2}\left(\frac{6 p}{p^{2}+4}\right) \\
& =\frac{3 p^{2}}{p^{2}+4} \\
-\left(\frac{6 p}{p^{2}+4}\right. & \left.>\frac{3 p^{2}}{p^{2}+4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Loces of } \& i s x^{2}+y^{2}-3 y=0 \\
& \text { LHS }=x^{2}+y^{2}-3 y
\end{aligned}
$$

$$
=\frac{36 p^{2}}{\left(p^{2}+4\right)^{2}}+\frac{9 p^{4}}{\left(p^{2}+4\right)^{2}}-\frac{9 p^{2}}{p^{2}+4}
$$

$$
=\frac{36 p^{2}+9 p^{4}-9 p^{2}\left(p^{2}+4\right)}{\left(p^{2}+4\right)^{2}}
$$

$$
=0
$$

$1 \frac{1}{2}$
d) Dumain: $x \in R$

Reange: $0<y \leq \frac{\pi}{6}$

(1) fer shape (is. (i. ut
(ii) (is moneto

Term 4 Ext 1 Maths QUESTION 6 Marking Guidelines (L. Kim)

(a) $y=3+\ln x \rightarrow$ swap x and y
$\therefore x-3=\ln y \rightarrow y=e^{x-3} \quad \quad \mathbf{1 \mathbf { m k }} \quad$ No half marks awarded.
(b) $y=\frac{1}{2} \tan ^{-1} x \quad \therefore \frac{d y}{d x}=\frac{1}{2\left(1+x^{2}\right)} \quad 1 \mathbf{m k} \quad$ No half marks
(c) Preferably draw separate graphs.

(d) From part (c) second graph, the domain of $y=\frac{1}{2\left(1+x^{2}\right)}$ is $\{x: x \varepsilon R\}$.

Also the range is $0<y \leq 1 / 2 \quad \therefore \sin ^{-1}(0)<\sin ^{-1}\left(\frac{1}{2\left(1+x^{2}\right)}\right) \leq \sin ^{-1}(1 / 2)$
\therefore FOR $y=\sin ^{-1} \frac{1}{2\left(1+x^{2}\right)}$
DOMAIN is $\{x: x \varepsilon R\}$ 1mk and the RANGE is $0<y \leq \frac{\pi}{6}$. $2 \mathrm{mk}-1 / 2 \mathrm{mk}$ each
(e)

$1 / 2 \mathrm{mk}$ shape
$1 / 2 \mathrm{mk} y$-intercept at $y=\frac{\pi}{6}$
$1 / 2 \mathrm{mk}$ asymptote $y=0$ $1 / 2 \mathrm{mk}$ scale Graph should be symmetrical.

