YEAR 11 Mathematics Extension 1 – 2005 Yearly Examination (Term 4)

Question 1.		Marks
(a)	An arc of length 10 cm subtends an angle of θ radians at the centre of a circle of radius 5 cm. Find the value of θ correct to the nearest minute.	2
(b)	Find the equation of the curve passing through the point $(1, 3)$ with a gradient function of $(x+1)(x-5)$.	3
(c)	Find the primitive function of	

(i)
$$2\sin 4x$$
. **2**
(ii) $\frac{x+3}{x^2+5}$. **3**

Question 2. [START A NEW PAGE]

(a)	The point <i>A</i> lies on the line $3x + 2y = 24$. A line, perpendicular to the <i>x</i> -axis, is drawn through point <i>A</i> and meets the <i>x</i> -axis at <i>B</i> .			
	(i)	If B is $(a, 0)$, find the coordinates of A in terms of a.	1	
	(ii)	The triangle bounded by the lines <i>AB</i> , $3x + 2y = 24$ and the <i>x</i> -axis has an area of 27 square units, find the coordinates of <i>A</i> .	3	
(b)	(i)	Given that <i>A</i> is $(-3, 7)$, <i>B</i> is $(-2, 12)$, <i>C</i> is (x, y) and <i>D</i> is $(2, 8)$. Find the coordinates of <i>C</i> if <i>ABCD</i> is a rhombus.	1	
	(ii)	Hence, find the area of <i>ABCD</i> .	3	
(c)	Find t	the integral of $4e^x + \sqrt{x}$.	2	

Question 3. [START A NEW PAGE]

(a)	(i)	Express $\sqrt{3}\sin\theta + \cos\theta$ in the form $A\sin(\theta + \alpha)$, where $A > 0$ and $0 < \theta < 2\pi$.	2
	(ii)	Find the minimum value of $\sqrt{3}\sin\theta + \cos\theta$ and determine when this minimum first occurs for $\theta \ge 0$.	2
	(iii)	Neatly sketch $y = \sqrt{3} \sin \theta + \cos \theta$, for $0 \le \theta \le 2\pi$, clearly showing showing all important feature.	3
(b)	Using	g the <i>t</i> -results, solve $\cos A + \sqrt{3} \sin A = -1$, for $0 \le A \le 2\pi$	3

Question 4.[START A NEW PAGE]Marks

(a) Find the exact area bounded by $y = \cos^{-1} x$, the *x*-axis and the lines at x = 0 and $x = \frac{1}{\sqrt{2}}$.

(b) Prove that
$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{4}$$
. 3

(c) Find
$$\int_{1}^{3} \frac{(x-1)}{(x+1)^3} dx$$
, using the substitution $u = x+1$. 4

Question 5. [START A NEW PAGE]

(a) If
$$A = \sin^{-1}\left(\frac{5}{13}\right)$$
, find the value of $\sin 2A$.

- (b) Given $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$, 4 and $p+q = 2\sqrt{3}$. Find the angle between the chord PQ and the axis of the parabola.
- (c) *P* is a point on $x^2 = 12y$ and *O* is the Origin. *Q* is the foot of the perpendicular **4** from the focus, *S*, of the parabola to *OP*. Show that the locus of *Q* is given by $x^2 + y^2 - 3y = 0$.

Question 6. [START A NEW PAGE]

(a) Find the inverse function of
$$y = 3 + \ln x$$
. 1

(b) Differentiate
$$y = \frac{1}{2} \tan^{-1} x$$
 with respect to x. 1

(c) Neatly sketch
$$y = \frac{1}{2} \tan^{-1} x$$
 and its derivative. 3

(d) Find the domain and range of
$$y = \sin^{-1} \left[\frac{1}{2(1+x^2)} \right]$$
. 3

(e) Neatly sketch
$$y = \sin^{-1} \left[\frac{1}{2(1+x^2)} \right]$$
. 2

THE END

3

2

$$74 - \frac{3}{2} -$$

Term 4 Ext 1 Maths QUESTION 6 Marking Guidelines (L. Kim)

