2006 Extension 1 Term 4

QUESTION ONE			MARKS
(a)	(i)	Find $\int (3x+5)^8 dx$.	1
	(ii)	Use the substitution $u = 3 - x^2$ to find $\int \frac{x dx}{\sqrt{3 - x^2}}$.	2
(b)	Express $\sqrt{12} \sin x + 2\cos x$ in the form of $A\cos(x + \alpha)$; where $A > 0$ and $0 \le \alpha \le 2\pi$.		3
(c)	(i)	By using one application of Simpson's Rule (i.e. 3 function values), find an approximation for the area bounded by $y = \frac{1}{x}$, $l \le x \le 2$, and the <i>x</i> axis, leaving your answer as a fraction in simplest terms.	2
	(ii)	Using integration, find an expression for the exact area in part (i).	1
	(iii)	Using your answers to parts (i) and (ii) above , find an approximation for e correct to 4 decimal places.	1
QUESTION TWO			
(a)	Differentiate $tan(x^2)$.		1
(b)	(i)	Differentiate $(xsin^{-1}\frac{x}{4} + \sqrt{16-x^2})$ and simplify.	3

(ii) Hence evaluate
$$\int_{0}^{4} sin^{-1} \frac{x}{4} dx$$
. 2

(c) (i) Given that (0,0) is the only stationary point of $y = xsin^{-1}\frac{x}{4}$, justify whether it is a minimum or maximum turning point. (ii) Hence, or otherwise, sketch the curve $y = xsin^{-1}\frac{x}{4}$.

QUESTION THREE

- (a) If x = a + b and y = a b, (i) Show that $\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$.
 - (ii) Hence find the general solutions to $\cos 4\theta + \cos 3\theta + \cos 2\theta + \cos \theta = 0.$

(b)

The region in the first quadrant bounded by the curve $y = 2\tan^{-1}x$ and the *y*-axis between y = 0 and $y = \frac{\pi}{2}$ is rotated through one complete revolution about the *y*-axis. Find the exact volume of the solid of revolution so formed.

QUESTION FOUR

(a) Evaluate $\int_{0}^{\frac{\pi}{6}} \sin^{2} x \cos^{2} x \, dx$. (b) A function is defined as $f(x)=1 - \cos \frac{x}{2}$, where $0 \le x \le a$. (i) Find the largest value of *a* for which the inverse function $f^{-1}(x)$ exists. (ii) Find the equation of $f^{-1}(x)$. (iii) Sketch the graph of $y = f^{-1}(x)$. 2

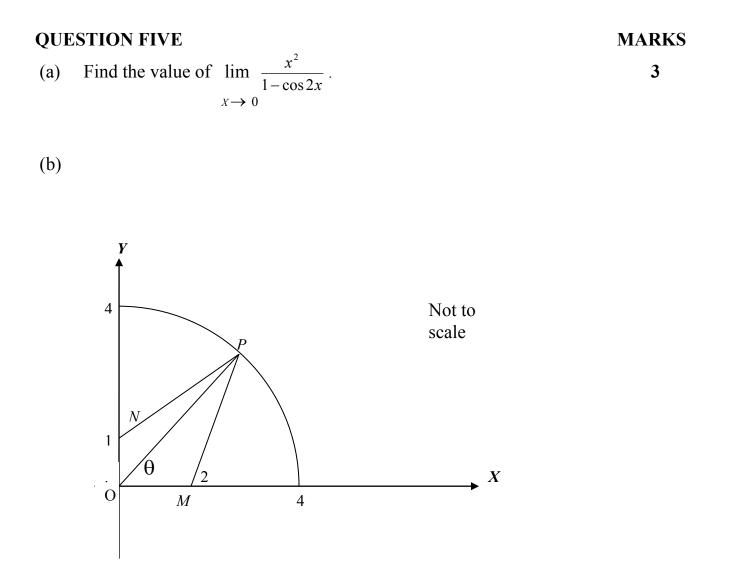
(iv) Find the area enclosed between the curve $y = f^{-1}(x)$, the x-axis and x = 2. 2

2

MARKS

4

4



The diagram shows the part of the circle $x^2 + y^2 = 16$ that lies in the first quadrant. The point P(x, y) is on the circle with centre at the origin O. *M* is on the *x*-axis at x = 2 and *N* is on the *y* -axis at y = 1. The size of angle *MOP* is θ radians.

- (i) Show that the area, A, of the quadrilateral OMPN is given by $A = 4\sin\theta + 2\cos\theta$.
- (ii) Find the value of $\tan \theta$ for which A is maximum.

2

(iii) Hence determine in surd form the coordinates of P for which A is 2 maximum.

QUESTION SIX

The straight line y = mx + b meets the parabola $x^2 = 4ay$ at the points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$.

(i) Find the equation of the chord PQ and hence, or otherwise, show 3 that $pq = \frac{-b}{a}$.

(ii) Prove that
$$p^2 + q^2 = 4m^2 + \frac{2b}{a}$$
. 2

(iii) Given that the equation of the normal to the parabola at *P* is $x + py = 2ap + ap^3$ and that *N*, the point of intersection of the normals at *P* and *Q*, has co-ordinates $[-apq(p+q), a(2+p^2+pq+q^2)]$, express these co-ordinates in terms of *a*, *m*, *b*.

(iv) Suppose that the chord PQ is free to move while maintaining a fixed gradient. Find the locus of N and show that this locus is a straight line.

Verify that this line is a normal to the parabola.

END OF PAPER

MARKS

Solution to
$$T4 = 3_{h} 2 end$$

(a) $(3x+5)^{q} + c = 4$
(i) $\frac{1}{2}\int \frac{du}{\sqrt{n}} = (x = 3-x)$
 $= -\frac{1}{2}\int \frac{du}{\sqrt{n}} = (x = 3-x)$

$$\begin{aligned} 3b) \quad y = 2 \tan^{2} x + \tan^{2} \\ Ard \quad g \quad \operatorname{vard} &= \pi \int x \, dy \\ = \pi \int \tan(\frac{y}{2}) \, dy = \pi \int (\mu(\frac{y}{2} - 1) \, dy + 1) \\ &= \pi \int \tan(\frac{y}{2}) \, dy = \pi \int (\mu(\frac{y}{2} - 1) \, dy + 1) \\ &= \pi \int \tan(\frac{y}{2}) \, dy = \pi \int (\mu(\frac{y}{2} - 1) \, dy + 1) \\ &= \pi \int \tan(\frac{y}{2}) \, dy = \pi \int (\mu(\frac{y}{2} - 1) \, dy + 1) \\ &= \pi \int \tan(\frac{y}{2}) \, dx = \frac{1}{2} \int \frac{\pi}{2} - \frac{\pi}{2\pi} \int \frac{\pi}{2\pi} \int$$

At P and Q:
$$y = mx + b$$
 and $y = \frac{x}{2}(p+q) - apq$
 $mx + b = \frac{x}{2}(p+q) - apq$
 $m = \frac{p+q}{2}$ $b = -apq$ $pq = \frac{b}{a}$ #
ii) Since $p+q = 2m$, $pq = -\frac{b}{a}$
 $p+q^2 = (p+q)^2 - 2pq = (2m)^2 - 2(-\frac{b}{a}) = 4m^2 + \frac{2b}{a}$ #

(ii)
$$\chi = -apq(p+q) = -a(\frac{-b}{a})2m$$
 $\chi = 2mb_{\frac{1}{4}}/$
 $Y = a(2+p^2+pq+q^2) = a(2+(p+q)^2-pq) = a(2+4m^2-\frac{-b}{a})$
 $Y = a(2+4m^2+\frac{b}{a}) = 2a+4am^2+b_{\frac{1}{4}}/$

^{N)} Since
$$b = \frac{2c}{2m}$$
 ... $y = 2a + 4am^2 + \frac{2}{2m}$
I Gradient of chord PQ is fixed ... In is a constant
but a is also a constant ... this is an equation of a straight
line in gradient - intercept form.
 $x - 2my = -4am - 8am^3$
 $1 \quad x + (-2m)y = 2a(-2m) + a(-2m)^3$
Compare this equation with equation of normal to parabole at 1
 $2 + py = 2ap + ap^3$
 p has been replaced by $(-2m)$
 \therefore locus of N is A straight line which is normal to
the parabola at point $(2ax - 2m, a(-2m)^2)$
 $i = at (-4m, 4an^2)$