Question 1

a) (i) Find $\int x e^{x^{2}} d x$.
(ii) Find $\int \frac{x+1}{x+2} d x$.
b) Use Simpson's rule with 3 function values to estimate $\int_{1}^{3} x \ln x d x$ correct to 2 decimal places.
c) (i) Express $\sqrt{3} \sin x-\cos x$ in the form of $R \sin (x-\alpha)$ where $R>0$ and $0 \leq \alpha \leq 2 \pi$.
(ii) Find the minimum of $\sqrt{3} \sin x-\cos x$.
(iii) Find the first positive value of x for which $\sqrt{3} \sin x-\cos x$ is a minimum.

Question 2 (Start a new page)

a) The points $A(6,5), B(2,0)$ and $C(8,3)$ are the vertices of a triangle.

Calculate the length of the altitude through A.
b) Find $\lim _{x \rightarrow 0}\left(\sin 3 x \div \tan \frac{x}{3}\right)$.
c) Find the area enclosed by the curve of $y=\frac{1}{\sqrt{16-x^{2}}}$, the x-axis and $x=2, x=-2$.

Question 3 (Start a new page)

a) Find $\int \sqrt{3 x-1} d x$.
b) Consider the function $\mathrm{f}(x)=\sqrt{4-\sqrt{x}}$.
(i) Explain why the domain of $\mathrm{f}(x)$ is $0 \leq x \leq 16$.
(ii) Prove that $\mathrm{f}(x)$ is a decreasing function.
(iii) Find the range of $\mathrm{f}(x)$.
(iv) Find the equation of $\mathrm{f}^{-1}(x)$.
(v) By considering the graphs of $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$, prove that

$$
\int_{0}^{16} \sqrt{4-\sqrt{x}} d x=17 \frac{1}{15}
$$

Question 4 (Start a new page)

a) Differentiate $y=\cos ^{-1}\left(x^{2}\right)$.
b) Given that $\sin ^{-1} x$ and $\cos ^{-1} x$ are acute,
(i) Show that $\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$.
(ii) Solve the equation $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(0.5)$.
c) The region bounded by the curve $x y=3$, the lines $x=1$ and $y=6$, and the axes is rotated about the y-axis.
Find the volume of the solid formed.

Question 5 (Start a new page)

a) Use the substitution $u=e^{x}$ to find $\int e^{e^{x}+x} d x$.
b) A rod $A B$ of length a is hinged to a horizontal table at A. The rod is inclined to the vertical at an angle θ. There is a light located at point P at a height h vertically above A. AC of length l is the shadow of the rod on the table.

(i) Prove that $l=\frac{a h \sin \theta}{h-a \cos \theta}$. (You may assume similar triangles without proof)
(ii) Prove that as θ varies, the maximum length of the shadow is $\frac{a h}{\sqrt{h^{2}-a^{2}}}$.

Question 6 (Start a new page)

a) Use the substitution $u=\sqrt{x}$ to evaluate $\int_{1}^{3} \frac{d x}{\sqrt{x}+x \sqrt{x}}$.

3

2

4
$y=2 \cos ^{-1}\left(\frac{x}{3}\right)$, the axes and $x=\frac{3}{2}$.

Question 7 (Start a new page)

a) Find the exact value of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$.
b) Ming was asked to sketch the graph of $y=\frac{x}{\ln \left(x^{2}\right)}$.
(i) He was thinking of changing $\ln \left(x^{2}\right)$ to $2 \ln (x)$. Does this change the graph? Why?
(ii) Prove that $y=\frac{x}{\ln \left(x^{2}\right)}$ is an odd function.
(iv) Sketch the graph of $y=\frac{x}{\ln \left(x^{2}\right)}$, showing all the important features.

End of Paper

TRAMS EXC 1 - YR II TH 2009

- Q|.
ai) $\frac{1}{2} e^{x^{2}}+c$ \#1
ii)

$$
\int 1-\frac{1}{x+2} d x=x-\ln (x+2)+c
$$

b)

$$
\begin{aligned}
& \frac{3-1}{6}(\mid \ln 1+4 \cdot 2 \ln 2+3 \ln 3) \\
= & \frac{1}{3}(8 \ln 2+3 \ln 3) \\
= & 2.947 \cdots \\
= & 2.95\left(2 \alpha_{p}\right)_{\#},
\end{aligned}
$$

Ci)

$$
\begin{gathered}
\sqrt{3} \sin x-\cos x=R \sin x \cos \alpha-R \cos x \sin \alpha \\
\sqrt{3}=R \cos \alpha \quad 1=R \sin \alpha \\
R=\sqrt{3+1}=2 \quad(R>0) \quad / \\
\operatorname{cn} \alpha=\sqrt{3} / 2 \text { and } \quad \sin \alpha=\frac{1}{2} \\
\alpha \text { is in Quad } / \\
\therefore \alpha=\frac{\pi}{6} \quad 1 \\
2 \sin \left(x-\frac{\pi}{6}\right)=\sqrt{3} \sin x-\cos x
\end{gathered}
$$

ii) m in $=-2$
ii)

$$
\begin{gathered}
\sin \left(x-\frac{\pi}{6}\right)=-1=\sin \left(\frac{3 \pi}{2}\right) \\
x-\frac{\pi}{6}=\frac{3 \pi}{2} \\
x=\frac{10 \pi}{6}=\frac{5 \pi}{3} \quad \#
\end{gathered}
$$

Q 2
a) Equation of BC :

$$
\begin{aligned}
& \frac{y-0}{x-2}=\frac{3-0}{8-2}=\frac{1}{2} \quad(2,0) \quad(8,3) \\
& y=\frac{1}{2}(x-2) \\
& 2 y-x+2=0 \\
& \begin{aligned}
-\dot{y}-x+2 y+2 & =0
\end{aligned} \\
& \text { altitude thanh } A:\left|\frac{6(-1)+5(2)+2}{\sqrt{5}}\right| \\
& \\
& =\frac{6}{\sqrt{5}}+1
\end{aligned}
$$

44
($2 . i j$)

$$
\begin{gathered}
f(x)=\sqrt{4-\sqrt{x}} \\
0 \leq x \leq 16
\end{gathered}
$$

when

$$
\begin{array}{ll}
x=0, & f(x)=2 \\
x=16 & f(x)=0
\end{array}
$$

but $f(x) \geqslant 0$

$$
\therefore \quad 0 \leq f(x) \leq 2
$$

Given
iv)

$$
y=\sqrt{4-\sqrt{x}} \quad \begin{aligned}
& 0 \leq x \leqslant 16 \\
& \\
& 0 \leq y \leqslant 2
\end{aligned}
$$

To find $f^{-1}(x)$:

$$
\begin{aligned}
x & =\sqrt{4-\sqrt{y}} \\
x^{2} & =4-\sqrt{y} \\
\sqrt{y} & =4-x^{2} \\
f^{-1}(x)=y & =\left(4-x^{2}\right)^{2}, 0 \leq x \leq 2
\end{aligned}
$$

$$
\sin \left(\sin ^{1} x-\cos ^{-1} x\right)=\sin \left(\sin ^{-1}(0.5)\right) \frac{1}{2}
$$

v)

$$
\begin{aligned}
& \int_{0}^{16} \sqrt{4-\sqrt{x}} d x=\int_{0}^{2}\left(4-x^{2}\right)^{2} d x \\
& =\int_{0}^{2} 16-8 x^{2}+x^{4} d x \\
& =\left[16 x-\frac{8}{3} x^{3}+\frac{x^{5}}{5}\right]_{0}^{2} \\
& =32-\frac{64}{3}+\frac{32}{5} \\
& =\frac{480-320+96}{15}, \frac{256}{15}, 16 \int_{0}^{y=f^{-1}(x), y=x}, \quad y=f(x) \\
& =17 \frac{1}{15} \#
\end{aligned}
$$

a) $y^{\prime}=\frac{-1}{\sqrt{1-x^{4}}} \cdot 2 x=\frac{-2 x}{\sqrt{1-x^{4}}} \quad \#$,
b(i) Let $\theta=\sin ^{-1} x$

$$
\beta=\cos ^{-1} x
$$

$$
\begin{aligned}
& \sin \left(\sin ^{2} x-\cos ^{-1} x\right) \\
&=\sin (\theta-\beta)=\sin \theta \cos \beta-\cos \theta \sin \beta \\
&=x \cdot x-\left(\sqrt{1-x^{2}}\right)\left(\sqrt{1-x^{2}}\right) \\
&=x^{2}-\left(1-x^{2}\right) \\
&=2 x^{2}-1
\end{aligned}
$$

ii) Solve $\sin ^{2} x-\cos ^{-1} x=\sin ^{-1}(0,5)$
c)

$$
x=1, y=3
$$

Fr. (i)

$$
\begin{aligned}
& 2 x^{2}-1=0.5 \quad \frac{1}{2} \\
& 2 x^{2}=1.5 \\
& x^{2}=0.75=\frac{3}{4} \\
& x= \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

but θ, β are acute
$v o f(A)=$ vol of cylinder

$$
=\left(\pi 1^{2}\right) 3=3 \pi
$$

$\operatorname{rat} B=\int_{3}^{6} \pi x^{2} d y=\pi \int_{3}^{6}\left(\frac{3}{y}\right)^{2} d y /$

$$
\begin{aligned}
& 1 \geqslant x \geqslant 0 \\
& \therefore x=\frac{\sqrt{3}}{2} \text { aby } \begin{array}{c}
\\
\# \neq .
\end{array} \quad \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =9{ }_{\pi 1} \int_{3}^{6} \frac{d y}{y^{2}}=9 \pi\left[-\left.\frac{1}{y}\right|_{\frac{1}{2}} ^{6}=-\frac{9 \pi}{6}+3 \pi\right. \\
\text { Total val } & =3 \pi+\frac{3 \pi}{2} \cdot \frac{1}{2}
\end{aligned}
$$

a)

$$
\begin{aligned}
u=e^{-} \quad d u & =e^{x} d x \\
\int e^{e^{x}} \cdot e^{x} d x & =\int e^{u} d u \\
=e^{u}+c & =e^{e^{x}}+c
\end{aligned}
$$

b)

(i) $\triangle P B D$ III $\triangle P A C$

$$
\begin{aligned}
\therefore \quad \frac{D B}{A C} & =\frac{P D}{P A} \\
\frac{a \sin \theta}{A C} & =\frac{h-a \cos \theta}{h} \\
\frac{a \sin \theta}{l} & =\frac{h-a \cos \theta}{h} \\
l & =\frac{a h \sin \theta}{h-a \cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \quad l=\frac{a h \sin \theta}{h-a \cos \theta} \\
& \frac{d l}{d \theta}=\frac{(h-a \cos \theta) a h \cos \theta-(h h \sin \theta) a \sin \theta}{(h-a \cos \theta)^{2}} \\
& \begin{aligned}
& 1 \\
& \frac{d l}{d \theta}=0 \quad \overbrace{}^{2} h \\
& \therefore \quad a h^{2} \cos \theta-a^{2} h \cos ^{2} \theta-a^{2} h \sin \theta=0 \\
& a h^{2} \cos \theta-a^{2} h=0 \\
& \quad h \cos \theta=a \\
& \cos \theta=\frac{a}{h} \quad \#
\end{aligned}
\end{aligned}
$$

Since $\cos \theta$ is a decreasing function for $0 \leqslant \theta \leqslant \frac{\pi}{2}$ and limit $\varepsilon \rightarrow 0^{+}$

$$
\begin{aligned}
& \cos (\epsilon+\varepsilon)>\frac{a}{h} \\
& \cos (\epsilon-\varepsilon)<\frac{a}{h}
\end{aligned}
$$

θ	$\cos ^{-1}\left(\frac{a}{h}\right)-\varepsilon$	$\cos ^{-1}\left(\frac{a}{h}\right)$	$\cos ^{-1}\left(\frac{a}{h}\right)+\varepsilon$
$\frac{d l}{d \theta}$	$+v e$	0	$-v e$

$\therefore \theta=\cos ^{-1}\left(\frac{a}{h}\right)$ is rel max
Since l is continuous for $0 \leq \theta \leq \frac{\pi}{2}$ and no other T.P $\theta=\cos ^{-1}\left(\frac{a}{h}\right)$ give absolute max.

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{h^{2}-a^{2}}}{h} \frac{1}{2} \\
& \cos \theta=\frac{a}{h}
\end{aligned}
$$

$$
\begin{aligned}
& c-\theta=\frac{a}{h} \\
& l=\frac{a h \sin \theta}{h-a \cos e}=\frac{a \sqrt{h^{2}-a^{2}}}{h-\frac{a^{2}}{h}} \\
& l=\frac{a \sqrt{h^{2}-a^{2}}}{h^{2}-a^{2}} \cdot h=\frac{a h}{\sqrt{a^{2}-h^{2}}}
\end{aligned}
$$

Qb
a)

$$
\begin{aligned}
& u=\sqrt{x} \\
& d_{n}=\frac{d x}{2 \sqrt{x}} \\
& 2 u d u=d x \\
& x=1, u=1 \\
& x=3 \quad u=\sqrt{3}
\end{aligned}
$$

1

$$
\int_{1}^{\sqrt{3}} \frac{2 u d x}{x\left(1+u^{\prime}\right)}=2 \int_{1}^{\sqrt{3}} \frac{d x}{1+x}=2\left[\tan ^{-1} x\right]_{1}^{\sqrt{3}} 1
$$

$$
=2\left[\frac{\pi}{3}-\frac{\pi}{4}\right]=\frac{\pi}{6}
$$

bi)

$$
x=3, y=2 \frac{\pi}{3} \quad \frac{1}{2}
$$

Cart A is a roctarple
Are e $A=\frac{2 \pi}{3} \cdot \frac{3}{2}=\pi$

$$
\text { Ares Pant } \begin{aligned}
B & =\int_{\frac{2 \pi}{3}}^{\pi} 3 \cos \frac{x}{2} d x \quad / \\
& =3 \cdot 2\left(\sin \frac{x}{2}\right)_{2 \frac{\pi}{3}}^{\frac{\pi}{3}} \\
& =6-6 \frac{\sqrt{3}}{2}=6-3 \sqrt{3} \\
\text { Tire }(A+\mathbb{B}) & =\pi+6-3 \sqrt{3} \text { malt } 1
\end{aligned}
$$

a) $=\frac{\pi}{4}$
bi) Yes, lost left half of the graph.
FoR $\quad y=\frac{x}{\ln x^{2}} \quad D, \quad x \in R \ln t x \neq 0, \pm$
FOR $y=\frac{x}{2 \ln -x} \quad D: x>0$ ene $x \neq 1$ 1
ii)

$$
\begin{aligned}
f(-x) & =\frac{-x}{\ln (-x)^{-}}=\frac{-x}{\ln x^{2}}=-f(x) \\
& \therefore \text { odd }
\end{aligned}
$$

$i z i)$ Since $f(x)$ is odd, inly need to consider values of $x>0$ and use point symmetry.

$$
\begin{aligned}
y & =\frac{x}{\ln x^{2}}=\frac{x}{2 \ln x} \quad x>0, x \neq 1 \\
y^{\prime} & =\frac{2 \ln x-x \cdot \frac{2}{x}}{(2 \ln x)^{2}}=\frac{2(\ln x-1)}{4(\ln x)^{2}} \\
y^{\prime} & =\frac{\ln x-1}{2(\ln x)^{2}}
\end{aligned}
$$

sp $y^{\prime}=0$ when $x=e, y=\frac{e}{2}$,

Keck max/nin					
x	2	e	3		
y^{\prime}	-0.32	0	0.04		

local mi s at $\left(e, \frac{e}{2}\right)_{i}$
using point symmatiy local max at $\left(-e,-\frac{e}{2}\right)$

