Year 11 Mathematics Extension I Term 4 2009

Question 1

Marks Find $\int xe^{x^2} dx$. a) (i) 1

(ii) Find
$$\int \frac{x+1}{x+2} dx$$
. 2

b)		Use Simpson's rule with 3 function values to estimate $\int x \ln x dx$ correct to	2
		2 decimal places.	
c)	(i)	Express $\sqrt{3} \sin x - \cos x$ in the form of $R \sin(x - \alpha)$ where $R > 0$ and $0 \le \alpha \le 2\pi$.	2
	(ii)	Find the minimum of $\sqrt{3} \sin x - \cos x$.	1
	(iii)	Find the first positive value of x for which $\sqrt{3} \sin x - \cos x$ is a minimum.	1

Question 2 (Start a new page)

a)	The points $A(6,5)$, $B(2,0)$ and $C(8,3)$ are the vertices of a triangle.	3
	Calculate the length of the altitude through <i>A</i> .	

b) Find
$$\lim_{x\to 0} (\sin 3x \div \tan \frac{x}{3})$$
. 3

Find the area enclosed by the curve of $y = \frac{1}{\sqrt{16 - x^2}}$, the *x*-axis and c) 3 x = 2, x = -2.

Question 3 (Start a new page)

a)		Find $\int \sqrt{3x-1} dx$.	1
b)		Consider the function $f(x) = \sqrt{4 - \sqrt{x}}$.	
	(i)	Explain why the domain of $f(x)$ is $0 \le x \le 16$.	1

(ii)Prove that
$$f(x)$$
 is a decreasing function.1(iii)Find the range of $f(x)$.1(iv)Find the equation of $f^{-1}(x)$.2

(v) By considering the graphs of
$$f(x)$$
 and $f^{-1}(x)$, prove that

$$\int_{0}^{16} \sqrt{4 - \sqrt{x}} \, dx = 17 \frac{1}{15}.$$

JRAHS Ext. 1 HSC AT1 2009

3

Question 4 (Start a new page)

a)		Differentiate $y = \cos^{-1}(x^2)$.	1
b)	(i) (ii)	Given that $\sin^{-1} x$ and $\cos^{-1} x$ are acute, Show that $\sin(\sin^{-1} x - \cos^{-1} x) = 2x^2 - 1$. Solve the equation $\sin^{-1} x - \cos^{-1} x = \sin^{-1}(0.5)$.	2 2
c)		The region bounded by the curve $xy = 3$, the lines $x = 1$ and $y = 6$, and the axes is rotated about the y-axis. Find the volume of the solid formed.	4

Question 5 (Start a new page)

a) Use the substitution
$$u = e^x$$
 to find $\int e^{e^x + x} dx$.

b) A rod AB of length a is hinged to a horizontal table at A. The rod is inclined to the vertical at an angle θ . There is a light located at point P at a height h vertically above A. AC of length l is the shadow of the rod on the table.

(i) Prove that
$$l = \frac{ah\sin\theta}{h - a\cos\theta}$$
. (You may assume similar triangles without proof)

(ii) Prove that as
$$\theta$$
 varies, the maximum length of the shadow is $\frac{ah}{\sqrt{h^2 - a^2}}$. 5

1

2

2

a) Use the substitution
$$u = \sqrt{x}$$
 to evaluate $\int_{1}^{3} \frac{dx}{\sqrt{x} + x\sqrt{x}}$.
b) (i) Sketch the graph $y = 2 \cos^{-1}\left(\frac{x}{3}\right)$.
(ii) Find the area of the region enclosed by between the graph
 $y = 2 \cos^{-1}\left(\frac{x}{3}\right)$, the axes and $x = \frac{3}{2}$.
Question 7 (Start a new page)
a) Find the exact value of $\tan^{-1}(\tan \frac{3\pi}{4})$.
b) Ming was asked to sketch the graph of $y = \frac{x}{\ln(x^2)}$.
(i) He was thinking of changing $\ln(x^2)$ to $2 \ln(x)$. Does this change the graph?
Why?
(ii) Prove that $y = \frac{x}{\ln(x^2)}$ is an odd function.
(iii) Find the turning point(s) of $y = \frac{x}{\ln(x^2)}$ and determine the nature.
(iv) Sketch the graph of $y = \frac{x}{\ln(x^2)}$, showing all the important features.
2

End of Paper

Question 6 (Start a new page)

a)

Marks

3

$$f(x) = \int \frac{4}{4} - \sqrt{x}$$

$$s \le x \le 116$$
(where $x > 0, \quad f(x) = 2$
 $x = 16 \quad f(x) = 0$
but $f(x) > 0$

$$f(x) = \sqrt{4} - \sqrt{x}$$

$$s \le f(x) \le 2$$

$$f(x) = \sqrt{4} - \sqrt{x}$$

$$s \le x \le 16$$

$$s \le y \le 2$$

$$f(x) = \sqrt{4} - \sqrt{y}$$

$$f(x) = \sqrt{4} - \sqrt{x}$$

$$f(x) = \sqrt{4} - \sqrt{2} - \sqrt{4} + \sqrt{4$$

a)
$$u = e^{u} du = e^{u} dx$$

 $\int e^{x} e^{x} dx = \int e^{u} du$
 $= e^{u} + c = e^{x} + c$
 $\#$
b)
 $\int \int \int P$
 $AD = a \cos \theta$
 $DB = a \sin \theta$
 $DB = a \sin \theta$
 $AD = a \sin \theta$
 $AD = a \cos \theta$
 $DB = a \sin \theta$
 $A = \frac{P}{PA}$
 $(7) \quad \Delta PBD III \Delta PAc$
 $\therefore \quad \frac{DB}{Ac} = \frac{P}{PA}$
 $Ac = \frac{P}{PA}$
 I
 $\frac{a \sin \theta}{Ac} = \frac{h - a \cos \theta}{h}$
 I
 $I = \frac{ah \sin \theta}{h - a \cos \theta}$
 dI
 $I = \frac{ah \sin \theta}{h - a \cos \theta}$
 dI
 $I = \frac{ah \sin \theta}{(h - a \cos \theta)^{2}}$
 I
 I
 $I = \frac{ah \sin \theta}{(h - a \cos \theta)^{2}}$
 I
 I
 $A^{2} = \frac{ah \sin \theta}{h - a \cos \theta}$
 $A^{2} = \frac{ah \cos \theta - ah \sin \theta}{h - a \cos \theta}$
 I
 I
 $A^{2} = \frac{ah \cos \theta - ah \cos \theta - ah \sin \theta}{h - a \cos \theta}$
 I
 I
 I
 $Ah^{2} \cos \theta - a^{2}h \sin \theta - a^{2}h \sin \theta = a$
 $ch \theta$

Since
$$\cos \theta$$
 is a decreasing
function for $0 \le 6 \le \frac{\pi}{2}$ and
 $limit \ge -30^{+1}$
 $co(\theta + \varepsilon) > \frac{a}{h}$
 $co(\theta - \varepsilon) < \frac{a}{h}$
 $\frac{\theta}{d\theta} + \frac{1}{\sqrt{n}} \frac{1}{\cos(\frac{a}{h})} \frac{\frac{1}{\cos(\frac{a}{h})} + \frac{1}{\cos(\frac{a}{h})}}{1}$
 $\frac{1}{\frac{d}{d\theta}} + \frac{1}{\sqrt{n}} \frac{1}{\cos(\frac{a}{h})} \frac{1}{\cos(\frac{b}{h}) + \frac{1}{\sqrt{n}}}$
 $\vdots = \frac{1}{\cos(\frac{a}{h})} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$
 $\vdots = \frac{1}{\cos(\frac{a}{h})} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$
 $\vdots = \frac{1}{\cos(\frac{a}{h})} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$
 $\int \frac{1}{\sqrt{n}} \frac{1}{$

$$l = \frac{a \int h^{-} a^{-} h}{h^{-} a^{-}} = \frac{a h}{\sqrt{a^{-} h^{-}}}$$

Q6

(c)
$$u = \sqrt{x}$$

 $\partial n = \frac{dx}{\sqrt{x}}$
 $\partial u dn = dx$
 $x = 1, u = 1$
 $x = 3, u = \sqrt{3}$
 $1 \int_{1}^{3} \frac{2u dv}{u(t+u)} = \frac{\sqrt{3}}{2} \frac{dn}{1+u} = 2\left[\frac{tan^{-1}n}{1}\right]^{1}$
 $= 2\left[\frac{t}{3} - \frac{t}{4}\right] = \frac{t}{1}$
 $h;$) $\frac{1}{1} = \frac{1}{1} = \frac{t}{1}$
 $h;$) $\frac{1}{1} = \frac{1}{1} = \frac{1}{2} \cdot \frac{t}{3} - \frac{t}{3}$
 $x = \frac{1}{2}, \frac{1}{2} = \frac{1}{2}$
 $x = \frac{1}{2}, \frac{1}{2} = \frac{1}{2}$
 $x = \frac{1}{2}, \frac{1}{2} = \frac{1}{2}$
 $1 \int_{1}^{3} \frac{1}{\sqrt{3}} = \frac{1}{2}$
 $h;$) $\frac{1}{1} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}$
 $h;$) $\frac{1}{1} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}$
 $h;$) $\frac{1}{1} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}$
 $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$
 $h;$ $h;$ $h;$ $h;$ $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$
 $h;$

$$\begin{array}{c} Q7\\ a) = \frac{T}{4} & 1\\ bi) Yeo, lost left half of the
qraph.
For $y = \frac{x}{k.x}$ D: xer but $x \pm 0, \pm$
For $y = \frac{x}{k.x}$ D: x>o but $x \pm 1$
ii) $f(-x) = \frac{-x}{k.(x)} = \frac{-x}{k.x} = -f(x)$
 $= odd$
iii) f(x) is odd, only need
for consider walker of x>o
and use point symmetry.
 $y = \frac{x}{k.x} = \frac{x}{2k.x}$ x>u, $x \pm 1$
 $y' = 20nx - x:\frac{2}{x} = \frac{2(lnx-1)}{4(lnx)^{-1}}$
 $y' = \frac{k.x-1}{2(l.x)^{-1}}$
 $y' = \frac{k$$$