YEAR 11 TERM 4 EXAMINATION 2010

MATHEMATICS EXTENSION 1

Time Allowed - 90 minutes
(Plus 5 minutes Reading Time)

All questions may be attempted

All questions are of equal value

Department of Education approved calculators are permitted

In every question, show all necessary working

Marks may not be awarded for careless or badly arranged work

No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate bundles clearly labelled Question 1, Question 2, etc. Each question must show your Candidate's Number.
(a) Given $A(-7,1), B(-4,6), C(1,3)$ and $D(-2,-2)$:
i. Prove that $A C$ and $B D$ are equal in length. $\mathbf{1}$
ii. Hence or otherwise prove that $A B C D$ is a square.
(b) Evaluate $\operatorname{cosec}\left(\frac{-5 \pi}{6}\right)$.
(c) Find $\int(5-4 x)^{6} d x$.
(d) Find the equation for y, given that $y^{\prime}=\frac{x+1}{x}$ and y passes through $(1,5)$.
(e) Solve for $x: \frac{2 x}{1-x}<0$.

Question 2 (9 Marks) - START A NEW PAGE

(a) Find the equation of the inflexional tangent of $y=x^{3}-2 x^{2}-2 x+2$.
(b) Using the substitution $u=x^{3}-2$, evaluate the integral $\int_{2}^{3} x^{2} \sqrt{x^{3}-2} d x$.
(c) The strength s of a rectangular beam is in proportion to the

Question 3 (9 Marks) - START A NEW PAGE

(a) Determine the minimum value of $y=\frac{x+1}{x^{2}}$.
(b) Use Simpson's rule with 3 function values to estimate $\int_{-1}^{3} \sqrt{x+3} \ln \sqrt{x^{2}+1} d x$ correct to 2 decimal places.
(c) Given $y=\frac{\tan x}{\sqrt{3}}-1$:
i. Prove that $(0,-1)$ is a point of inflexion.
ii. Hence, neatly sketch the curve for $0 \leq x \leq 2 \pi$.
(a) Find $\int \frac{2 x^{2}-6}{x^{2}+9} d x$.
(b) By considering the equation $x^{2}+y^{2}=r^{2}$, prove that the volume of a sphere with radius r is given by $V=\frac{4}{3} \pi r^{3}$.
(c) The region bounded by the curve $y=\frac{1}{x}$ and the x-axis between $x=1$ and $x=2$ is rotated through one complete revolution about the y-axis. Find the exact volume of the solid of revolution so formed.

Question 5 (9 Marks) - START A NEW PAGE

(a) If $f(x)=\sin ^{-1} x \& g(x)=\cos ^{-1} x$, prove that $\frac{d}{d x}[f(x) g(x)]=-f^{\prime}(x)[f(x)-g(x)]$.
(b) A function is defined by $f(x)=\frac{\sqrt{4-x^{2}}}{x}$.
i. Find the largest positive domain for which $y=f(x)$ has an inverse.
ii. For the domain in (i), find an expression for $y=f^{-1}(x)$, the inverse of $y=f(x)$.
iii. State the domain and range of $y=f^{-1}(x)$.
iv. For the domain in (i) and on the same graph, neatly sketch $y=f(x)$ and $y=f^{-1}(x)$, clearly identifying each sketch.
(a) i. Express $3 \sin x+\sqrt{3} \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0 \leq \alpha \leq 2 \pi$.
ii. Hence find the general solutions to $3 \sin x+\sqrt{3} \cos x=3$.
(b) $A B C D$ is a square with sides of length 1 m . Quadrants $C B D$ and $A P Q$ touch at point $X . C P$ and $C Q$ are constructed such that the shaded area is enclosed by figure $R Q X P S$.

DIAGRAM NOT TO SCALE
i. Show that $\angle P C Q=0.51$ radians (to 2 decimal places).
ii. Hence or otherwise calculate the shaded area to the nearest square centimetre.

Question 7 (9 Marks) - START A NEW PAGE

(a) Find the equation of the normal to the curve $y=\sin ^{-1}\left(\frac{\sqrt{x}}{2}\right)$ where $x=1$.
(b) For the function $y=\tan ^{-1}(2 x)+\tan ^{-1}\left(\frac{2}{x}\right)$:
i. Show that $\frac{d y}{d x}=\frac{2}{4 x^{2}+1}-\frac{2}{4+x^{2}}$.
ii. State the domain and range of the function.
iii. Neatly sketch the graph of $y=\tan ^{-1}(2 x)+\tan ^{-1}\left(\frac{2}{x}\right)$, clearly labelling all stationary points.

YIZ M. ExT I Assess TEST I
TERM 4,2010
MATHEMATICS Extension 1 : Question........
Suggested Solutions \quad Marks

Marker's Comments
ai) $A C=\sqrt{(-7-1)^{2}+(1-3)^{2}}=\sqrt{8^{2}+2^{2}}=\sqrt{68}$

$$
\begin{aligned}
B D & =\sqrt{(-4+2)^{2}+(6--2)^{2}}=\sqrt{2^{2}+8^{2}}=\sqrt{68} \\
& \therefore A C=B D
\end{aligned}
$$

ic) $m(A C)=\frac{3-1}{1--7}=\frac{2}{8}=\frac{1}{4}$

$$
\begin{aligned}
& m(B D)=\frac{6--2}{-4-2}=\frac{8}{-2}=-4 \\
& \therefore m(A C) \times m(B D)=-1 \quad A C \perp B \\
& m \operatorname{Cd}(A C)=\left(\frac{-7+1}{2}, \frac{1+3}{2}\right)=(-3,2) \\
& m=d(B D)=\left(\frac{-4-2}{2}, \frac{6-2}{2}\right)=(-3,2)
\end{aligned}
$$

diagonals are equal and bisect each other at 90°
b) $\frac{1}{\sin \left(\frac{-\sqrt{3}}{6}\right)}=\frac{1}{-\frac{1}{2}}=-2$
c) $\frac{(5-4 x)^{7}}{-28}+c$
d)

$$
\begin{gathered}
y=\int 1+\frac{1}{x} d x=x+\ln x+c \\
5=1+\ln 1+c \\
c=4 \\
y=x+\ln x+4
\end{gathered}
$$

c)

$$
\begin{aligned}
& \frac{2 x}{1-x} \times(1-x)^{2}<0(1-x)^{2} \\
& 2 x(1-x)<0 \\
& \therefore \quad x<0 \text { or } x>)
\end{aligned}
$$

most students forgot to prove bisect all 1 m must give reason $-\frac{1}{2} m$
Ho half mark.
overall, well dene.
forgot last line $-\frac{1}{2}$, $x<0$ (or) $x>1$ use 'ard' $-\frac{1}{2} m$
YR II TERM 4 MATHEMATICS Extension 1: Question 2 2010
(c) $d^{2}+w^{2}=48^{2}$ (Pythagoras theorem)

$$
\begin{aligned}
d^{2} & =48^{2}-w^{2} \\
\therefore \quad S & =k w\left(48^{2}-w^{2}\right) \\
S & =48^{2} k w-k w^{3} \\
\therefore \frac{d s}{d w} & =48^{2} k-3 k w^{2} \\
& =k\left(48^{2}-3 w^{2}\right)
\end{aligned}
$$

Stationary pts exist when $\frac{d s}{d w}=0$

$$
\text { ide. } \begin{aligned}
k\left(48^{2}-3 w^{2}\right) & =0 \\
3 w^{2} & =48^{2} \\
w^{2} & =\frac{48^{2}}{3} \\
w & =\frac{48}{\sqrt{3}} \quad(\cos \omega>0) \\
w & =16 \sqrt{3} \mathrm{~cm}(\sqrt{768})
\end{aligned}
$$

Test nature

$$
\frac{d^{2} s}{d w^{2}}=-6 k w
$$

when $\omega=16 \sqrt{3}, \quad \frac{d^{2} s}{d w^{2}}=-96 \sqrt{3} k$
Now for $k>0 \frac{d^{2} s}{d w^{2}}<0$ dornowe
\therefore Local maximum exists when

$$
\omega=16 \sqrt{3} \mathrm{~cm}
$$

as the function is continuous for $0 \leqslant \omega \leqslant 48$ and these is only one turning pt. He local max. is also the absolute max.
When $\omega=16 \sqrt{3}, d^{2}=48^{2}-(16 \sqrt{3})^{2}$

$$
\begin{aligned}
& d^{2}=153 b \\
& d=16 \sqrt{b} \mathrm{~cm}(d>0)
\end{aligned}
$$

\therefore Dimensions of the strongest rectargular harm are $16 \sqrt{3} \mathrm{~cm}$ wide and $16 \sqrt{6} \mathrm{~cm}$ deep.

Marks Marker's Comments
Not squaring 48 macle the calculations a lot easier, 50 a max of z marks for the whole question.
$\frac{1}{2}$ mask deducted for not stating $w>0+d>0$

Locating the stat. pt.
If the students did the ist derivative test they needed to say $k>0$ for the full mork. (strength is position)
$\frac{1}{2}$ mark deducted for not proving absolute max.
$\frac{1}{2}$ mask deducted for no units

YR II TERM 4 MATHEMATICS Extension 1: Question 2 2010

Qu
(a) $y=x^{3}-2 x^{2}-2 x+2$
y^{\prime}

$y^{\prime \prime}=6 x-4$
For inflexion pts $y^{\prime \prime}=0$

For inflexion pts $y^{\prime \prime}=0$

$$
\begin{aligned}
b x-4 & =0 \\
x & =\frac{2}{3}, y=\frac{2}{27}
\end{aligned}
$$

x	$\frac{1}{3}$	$\frac{2}{3}$	1
y^{u}	-2	0	2

Change in concowity \therefore Inflexion pt. at $\left(\frac{2}{3}, \frac{2}{7}\right)$
When $x=\frac{2}{3}, y^{\prime}=-\frac{10}{3}$
En. of inflexional tangent is:

$$
\begin{aligned}
& y-\frac{2}{27}=-\frac{10}{3}\left(x-\frac{2}{3}\right) \\
& y-\frac{2}{27}=-\frac{10 x}{3}+\frac{20}{9} \\
& 27 y-2=-90 x+60 \\
& 90 x+27 y-62=0
\end{aligned}
$$

(b) $\int_{2}^{3} x^{2} \sqrt{x^{3}-2} d x=\int_{6}^{25} \frac{1}{3} \sqrt{u} d u$

Let $u=x^{3}-2$

$$
\frac{d u}{d x}=3 x^{2}
$$

$$
\frac{d x}{d x}=3 x^{2} d x
$$

when $x=2 u=6$

$$
\begin{aligned}
& x=3 u=25 \\
& \therefore \int_{6}^{25} \frac{1}{3} \sqrt{u} d u=\frac{1}{3}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{b}^{25} \\
&=\frac{2}{9}\left[u^{\frac{3}{2}}\right]_{6}^{25} \\
&=\frac{2}{9}(125-6 \sqrt{6}) \\
&=\frac{250-12 \sqrt{6}}{9} \\
& o R=24.51(2 d p)
\end{aligned}
$$

$\frac{1}{2}$ mask deducted for not testing For inflexion pt.
lark for the charge of limits

1 mask for correct assurer

YIZ. M. ExT I, HSSEESMENT TEST I
TERM 4.2010
MATHEMATICS Extension 1 : Question. 3
Suggested Solutions \quad Marks

$$
\begin{aligned}
& \text { Suggested Solutions } \\
& 0 B(a) y=\frac{x+1}{x}=x^{-1}+x^{-2}, x \neq 0 \\
& \frac{d y}{d x}=\frac{-1}{x^{2}}-\frac{2}{x^{3}}=-\frac{(x+2)}{x^{3}} \\
& \frac{d^{1} y}{d x^{2}}=\frac{2}{x^{3}}+\frac{6}{x^{4}}=\frac{2 x+6}{x^{4}}
\end{aligned}
$$

For possible TD, to occur dy $=0$

$$
\begin{aligned}
& \therefore-\frac{1}{x^{2}}-\frac{2}{x^{3}}=\frac{-(x+2)}{x^{3}}=0 \\
& \therefore x=-2 \quad y=-\frac{1}{4} \quad S P=\left(-2,-\frac{1}{4}\right)
\end{aligned}
$$

TEST: at $x=-2$

$$
-\frac{d^{2} y}{d x^{2}}=-\frac{2}{8}+\frac{6}{16}=\frac{1}{8}>0
$$

\therefore concave up watudes
\therefore CR el. Min TP $a t x=-2$
s wee y is cont and lifferenciceble for $k<0$ an $x=0$ eng the te is only one TP
\therefore onstule vein is $-\frac{1}{4}$ (when $x=-2$)
or: $x^{2} y=x+1$

$$
x^{2} y-x-1=0
$$

For x fo $u<0$ real $\Delta \geqslant 0$ bf

$$
\begin{aligned}
& \therefore(-1)^{2}-4, \gamma-(-1) \geqslant 0 \\
& 1+4 y \geqslant 0 \\
& \therefore R_{f}=\left\{y: y \geqslant-\frac{1}{4}\right\}
\end{aligned}
$$

when $y=-\frac{1}{4}$ the $=$ is $a T P$ at $x=\frac{-(-1)}{2 x\left(-\frac{1}{4}\right)}=$
$\therefore \operatorname{nin}($ ans $)$ value is $\frac{-1}{4}$ wren $x=-\frac{2}{2}$
(b) $\int_{-1}^{3} \sqrt{x+3} \ln \sqrt{x^{2}+1} d x: \quad h=\frac{3-(-1)}{2}=\frac{4}{2}=2$

$$
x=-\frac{b}{2 c c}
$$

$$
\pm \frac{h}{3}\left[y_{1}+4 y_{z}+y_{3}\right]
$$

$$
\begin{aligned}
& =\frac{2}{3}[\sqrt{2} \ln \sqrt{2}+4 \times 2 \ln \sqrt{2}+\sqrt{6} \ln \sqrt{10}] \\
& =\frac{y_{1}}{3}[6 \cdot 082797 \cdot-7=4 \cdot 055 / 98052 \cdots \\
& =4 \cdot 06 \quad y_{2} \\
& =2 d \cdot p)
\end{aligned}
$$

$\frac{1}{2}$ For $\frac{2}{3}$
1 For CNES y_{1}, y_{2}, y_{3}
$\frac{1}{2}$ For 4 -ob. gained correctly 2
(c) $(1) y=\frac{1}{\sqrt{3}} \tan x-1$

$$
\frac{d y}{d x}=\frac{1}{\sqrt{2}} \sec ^{2} x
$$

$$
\frac{d^{2} y}{k x^{2}}=\frac{2}{\sqrt{3}} \sec ^{2} x+\operatorname{cex} x=\frac{2}{\sqrt{3}} \frac{\operatorname{sen} x}{\operatorname{sos} x} \cdot \cdots \quad \frac{1}{2}
$$

$$
\therefore p o s=p=I \quad(0,-1)
$$

TEst

x	-1	0	0.1	$\frac{1}{2}$	1	
$\frac{4^{2}}{d x^{2}}$	-6.16	0	0.117	0.897	6.16	$\frac{4}{\sqrt{3}}$

\therefore a change in sign
$1<$ enarage in aoseavity $(-0+$)
$\therefore a$ point of inflection cot ($0,-1$)
ii) $\leq k e t a h \quad y=\frac{1}{\sqrt{3}}+a x k \quad-1 \quad-\frac{\pi}{2} \leq x \leq 2 \pi$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \therefore s \in e x+\cos n k=0 \quad r e-\tan x=0 \\
& \therefore \quad x=0,+2,2 x, \ldots \\
& y=-1,-1,-1, \ldots
\end{aligned}
$$

Year 11 Assessment 1 Term 42010 - Ext 1 Marking Scheme - Q4 - L.Kim
(a) $\int \frac{2 x^{2}-6}{x^{2}+9} d x=2 \int \frac{x^{2}+9-12}{x^{2}+9} d x$

$$
\begin{aligned}
& =2 \int 1 d x-\int \frac{12}{x^{2}+9} d x \\
& =2\left[x-4 \tan ^{-1}\left(\frac{x}{3}\right)\right]+c,
\end{aligned}
$$

where c is a constant

- Correctly breaks up the fraction - 1 mk
- Correctly integrates both- 1 mk
- Correctly integrating $\int \frac{1}{x^{2}+9} d x-1 / 2$ mark only
(b) $x^{2}+y^{2}=r^{2} \rightarrow$ circle centre $(0,0)$ radius r.

Take shaded area and rotate it around the x-axis

$$
\begin{aligned}
\therefore \text { volume } & =\pi \int_{-r}^{r} y^{2} d x \\
& =\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r} \\
& =\pi\left[r^{2}(r)-\frac{(r)^{3}}{3}-r^{2}(-r)+\frac{(-r)^{3}}{3}\right] \\
& =\pi\left[2 r^{3}-\frac{2 r^{3}}{3}\right]=\frac{4 \pi r^{3}}{3} \text { as required }
\end{aligned}
$$

- Students can do rotation about the y axis also.
- Correctly uses the equation of circle to get to correct definite integral - 1 mk
- Correctly integrates wrt $x-1 \mathrm{mk}$
- Correctly substitutes and simplifies clearly showing how they get answer - 1 mk
(c)

To find this volume you must add the Vol A to Vol B
\therefore Volume $\mathrm{A}=$ Vol. cylinder

$$
=\pi\left(2^{2}\right)\left(\frac{1}{2}\right)-\pi\left(1^{2}\right) \frac{1}{2}=\frac{3 \pi}{2}
$$

Volume B $=\pi \int_{\frac{1}{2}}^{1} \frac{1}{y^{2}} d y-\pi\left(1^{2}\right) \frac{1}{2}$

$$
\begin{aligned}
& =\pi\left[-\frac{1}{y}\right]_{\frac{1}{2}}^{1}-\frac{\pi}{2} \\
& =-\pi+2 \pi-\frac{\pi}{2} \\
& =\frac{\pi}{2}
\end{aligned}
$$

\therefore total volume $=\frac{3 \pi}{2}+\frac{\pi}{2}=2 \pi$ cubic units

- This question was very poorly done.
- Most students had no idea what to do with the question.
- Correctly finds vol. A $11 / 2 \mathrm{mks}$
- Correctly integrates $\pi \int_{\frac{1}{2}}^{1} \frac{1}{y^{2}} d y-11 / 2 \mathrm{mks}$
- Correctly subtracts off the vol. of cylinder $1 / 2 \mathrm{mk}$
- Final answer - $1 / 2 \mathrm{mk}$

NOTES:

1. Max 1 mk if correctly did rotation about $x-$ axis i.e.
$\pi \int_{1}^{2} \frac{1}{y^{2}} d x$
2. Also some students only did $\pi \int_{1}^{2} \frac{1}{y^{2}} d y$ - again max 1 mk .

(iii)

$$
\begin{aligned}
& D ; x>0 \\
& B=0<y \leqslant 2
\end{aligned}
$$

lots of students wrote the domain and range wrong but then managed to graph the correct graph!?!?
\ICALLISTO\StaffHomeSIWOHYRRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4_half Ls.doc

9)
YII 3 V T4 MATHEMATICS Extension 1 : Question........

RSA
Suggested Solutions
Marks
Marker's Comments
\qquad
$\therefore \quad R \sin \alpha=-\sqrt{3} \quad$ an \quad R $20 \quad$ 位 $\alpha<0$
tand $=\frac{-1}{\sqrt{3}} \quad \frac{3}{2}<\lambda \ll \pi$
$\alpha=4 \frac{\pi}{6}$.
$1=\sqrt{3^{2} \times(\sqrt{3})^{2}}=$

$$
=d_{12}
$$

$$
\therefore 3 \text { Ahes } x \sqrt{3} \cos x+2 \sqrt{3} \min \left(x-\frac{11 \pi}{6}\right)
$$

(ii)

$$
a 2 \sqrt{3} \sin (x-4 \pi)=3
$$

$$
\sin \left(x-\frac{1 \pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

$$
\frac{x-11 \pi^{6}}{6}=4 k+(-1)^{k}-\frac{\pi}{3}
$$

(ii)
$x=\frac{14 \pi+\pi k}{6}+(-1)^{2} \cdot \frac{\pi}{3} \quad h$

$$
\therefore A x=\sqrt{2} \sqrt{2}-1
$$

$$
\text { I. } A P=\sqrt{2-1}
$$

$$
\begin{aligned}
A P & =\sqrt{2-1} \\
D Q & =R /-(k-1) \\
& =2-\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2-\sqrt{2} \\
& \frac{c D}{c \mid}=2-\sqrt{2} \\
& a_{2}=4
\end{aligned}
$$

$$
\begin{aligned}
L_{1 P L}= & =\frac{1 / 00}{2}-2 \min ^{-1}(2-\sqrt{2}) \\
& =0.51
\end{aligned}
$$

$A r_{a} A P C R=2|A P C|$

$$
\begin{aligned}
& =\frac{2 \times 1}{2 \times 1}(\sqrt{2}-1), 1 \\
& =\sqrt{2-1}
\end{aligned}
$$

Ane quad $=\frac{\sqrt{2}-1}{2}=\frac{1}{2} \cdot\left(\frac{\sqrt{21}}{}\right)^{2} \cdot \frac{\pi}{2}=0.13475$.
$\mathrm{J}:$ Mahbs SUugesesed Mik sons templace_ f.oco
OR $240 \mathrm{~cm}^{2}$ (nenest cm^{2}).

$$
\begin{aligned}
& \text { Ansa deter ORS }=\frac{1}{1} \cdot l^{2} \cdot 0.51-0.25550 \text {. } \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =0.41421-0.13475-0.2550 \\
& =0.02396
\end{aligned}
$$

Maths ExT 1: TeRM 4 Yr 11 Task 1: 2010
Q7

$$
\begin{aligned}
& y=\sin ^{-1}\left(\frac{\sqrt{x}}{2}\right) \\
& y^{\prime}=\frac{1}{\sqrt{1-\left(\frac{\sqrt{x}}{2}\right)^{2}}} \cdot \frac{1}{2} \times \frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{4 \sqrt{x} \sqrt{1-\frac{x}{4}}} \\
& =\frac{1}{4 \sqrt{x} \cdot \frac{1}{2} \sqrt{4-x}} \\
& =\frac{1}{2 \sqrt{x} \sqrt{4-x}} \\
& \therefore m_{\text {tangent }}=y^{\prime}(1)=\frac{1}{\sqrt{12}} \\
& \therefore m_{\text {normal }}=-\sqrt{12}
\end{aligned}
$$

When $x=1, y=\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
Hence equation of normal is

$$
\begin{aligned}
& y-\frac{\pi}{6}=-\sqrt{12}(x-1) \\
& \Rightarrow y=-\sqrt{12} x+\left(\sqrt{12}+\frac{\pi}{6}\right)
\end{aligned}
$$

$\frac{1}{2}$ for derivative (in unsimplified
$\frac{1}{2}$ for slope of tangent $\frac{1}{2}$ for slope of normal
$\frac{1}{2}$ for coordinates of point of contact
$\frac{1}{2}$ for m and coordinates in point gradient formula
$\frac{1}{2}$ for expressing equation ecther in the form $y=m x+b$ or $a x+b y+c=0$

Note: (i) If $m_{\text {tangent }}$ used to get equation, then mane $2 \frac{1}{2}$
(ii) If derivative incorrect, then max $2 \frac{1}{2}$
(iii) If no working for $\pi / 6$ minus $\frac{1}{2}$
(iv) Minus $\frac{1}{2}$ for poor notation eg $m_{N}, m_{T}, \perp y^{\prime}$, perpendicular -1 etc
(b) (i) $y=\tan ^{-1} \frac{x}{2}+\tan ^{-1} \frac{2}{x}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{1+(2 x)^{2}} \cdot 2+\frac{1}{1+\left(\frac{2}{x}\right)^{2}} \cdot\left(-2 x^{-2)}\right. \\
& =\frac{2}{1+4 x^{2}}-\frac{2}{x^{2}\left(1+\frac{4}{x^{2}}\right)} \\
& =\frac{2}{1+4 x^{2}}-\frac{2}{x^{2}+4}
\end{aligned}
$$

(ii) Domain: $x \neq 0, x \in \mathbb{R}$ reals and

Range: $\frac{\pi}{2}<y \leq 2.21 \quad \cup-2.21 \leq y<-\frac{\pi}{2}, y \in \mathbb{R}$ reals
(iii) $\frac{d y}{d x}=0 \ldots \ldots$ for stationary points:
ie.

$$
\begin{aligned}
& \frac{2}{1+4 x^{2}}-\frac{2}{x^{2}+4}=0 \\
& \Rightarrow \\
& \frac{2}{1+4 x^{2}}=\frac{2}{x^{2}+4} \\
& x^{2}+4=1+4 x^{2} \\
& x= \pm 1
\end{aligned}
$$

when $x=1, y=2.21$ or $2 \tan ^{-1} 2$
when $x=-1, y=-2.21$ or $2 \tan ^{-1}(-2)$
$\frac{1}{2}$ for both terms of derivative

$$
\begin{aligned}
& \frac{1}{2} \text { for simplification - must show } \\
& \text { now. }
\end{aligned}
$$

$x \neq 0$ or $x<0$ and $x>0$ then 1 mark
$\frac{1}{2}$ for $x \in \mathbb{R}$ only
0 for $y \in \mathbb{R}$ only. $\frac{1}{2}$ for each range

x	-1.5	-1	-0.5	0.5	+1	1.5
y^{\prime}	$-3 / 25$	0	$9 / 17$	$9 / 17$	0	$-3 / 25$
	\searrow	-	$/$	$/$	-	\searrow

$$
\} \frac{1}{2} \text { for testing }
$$

Hence $\left(1,2 \tan ^{-1} 2\right)$ is a local maximum and $\left(1,-2 \tan ^{-1} 2\right)$ is a local minimum

$\frac{1}{2}$ for correct intercepts $\frac{1}{2}$ for shape, including discontinuity and asymptote
$\frac{1}{2}$ for max on graph $\frac{1}{2}$ for min on graph $\max 1 \frac{1}{2}$ for

