YEAR 12
 ASSESSMENT TEST 1 TERM 4, 2013

 MATHEMATICS

 MATHEMATICS EXTENSION 1

 EXTENSION 1}

Time Allowed - 90 Minutes
(Plus 5 minutes Reading Time)

- All questions may be attempted
- Department of Education approved calculators and templates are permitted
- In every Question, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate bundles clearly labeled Question 1, Question 2, etc.
Each question must show (in the top right hand corner) your Candidate Number.
(a) Find: $\quad \int x^{2} e^{x^{3}} d x$

1
(b) Find: $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$
(c) Find the exact value of: $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)+\tan ^{-1}\left(\tan \frac{7 \pi}{8}\right)$
(d) (i) Prove $\cos (A+B)-\cos (A-B)=-2 \sin A \sin B$
(ii) Hence find the exact value of $\cos 75^{\circ}-\cos 15^{\circ}$

QUESTION 2 (10 Marks)
COMMENCE A NEW PAGE
(a) Differentiate $\cos ^{-1}(2 x)$.
(b) Use Simpson's Rule with 3 function values to estimate

$$
\int_{0}^{\frac{1}{2}} \frac{1}{2} \cos ^{-1}(1-2 x) d x
$$

(c) (i) Show that $\frac{5 x^{2}+4}{x^{2}+4}=5-\frac{16}{x^{2}+4}$
(ii) Hence, evaluate to 2 decimal places,

$$
\int_{-\frac{1}{2}}^{0} \frac{5 x^{2}+4}{x^{2}+4} d x
$$

(d) The vertices of $\triangle A B C$ are $A(4,-3), B(-9,7)$ and $C(1, k)$. If the area of $\triangle A B C$ is 15 square units, find the value(s) of k.
(a) Given $f(x)=\frac{x^{3}-3 x^{2}}{x^{2}-1}$,

(i) Determine all intercepts of $f(x)$.
(ii) Write down the equations for the horizontal and vertical asymptotes, if any.
(iii) Show that the oblique asymptote is given by $y=x-3$.
(iv) Hence make a neat sketch of $f(x)$, showing all intercepts and turning points.
[You may assume, without proof, the following:
(i) $f^{\prime}(x)=\frac{x^{4}-3 x^{2}+6 x}{\left(x^{2}-1\right)^{2}}$
(ii) $x^{3}-3 x+6=0$, when $x \approx-2.3$]
(b) Find the area enclosed by the curve of $y=\frac{9}{9+x^{2}}$, the x-axis and the lines $x=1$ and $x=-1$.
(c) Using $t=\tan x$, find the general solution in radians to $\sin 2 x=\tan x$.

QUESTION 4 (10 Marks) COMMENCE A NEW PAGE

(a) Using the substitution $u=1+2 x$, find

$$
\int \frac{6 d x}{\sqrt{(1+2 x)^{3}}}
$$

(b) Consider $y=\sqrt{3} \sin \theta-3 \cos \theta$
(i) Express y in the form $R \sin (\theta-\alpha)$ where $R>0$, and $0 \leq \alpha \leq 2 \pi$.
(ii) By first finding the maximum and minimum turning points, sketch a neat graph of $y=\sqrt{3} \sin \theta-3 \cos \theta$, for $0 \leq \theta \leq 2 \pi$.
(c) Prove the identity: $2 \cos ^{2} \theta-2 \cos ^{2} 2 \theta=\cos 2 \theta-\cos 4 \theta$
(d) Assuming, $\frac{d}{d x}\left[\tan ^{-1} \frac{x}{2}+\frac{2 x}{x^{2}+4}\right]=\frac{16}{\left(x^{2}+4\right)^{2}}$ evaluate $\int_{-2}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}}$
(a) Prove that $\frac{d}{d x}\left[\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}\right]=\frac{d}{d x}\left[\sin ^{-1} x\right]$
(b) Evaluate $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{3-x^{2}}}$
(c) A tank which is initially empty is being filled with water at a rate given by

$$
\frac{d V}{d t}=\pi\left(100-\frac{t^{2}}{100}\right) L / S
$$

Where V is the volume of water in Litres after t seconds.
(i) At what rate is the volume of water changing when $t=10$ seconds?
(ii) How long will it take to fill the tank?
(iii) Find the maximum volume of water in the tank.

QUESTION 6 (10 Marks)

COMMENCE A NEW PAGE

(a) A trapezium ABCD , is inscribed in a semicircle, centre O and radius 2 cm , so that one side is along the diameter, as shown below. θ is the angle subtended at the centre of the semicircle by one of the non-parallel sides of the trapezium.

(i) Redraw the diagram and derive an expression for the area of the trapezium in terms of θ only.
(ii) Find the maximum possible area for the trapezium.

Leave answer in exact form.
(b) If $y=2 \cos ^{-1} \frac{x}{3}$,
(i) State the domain and range of y.
(ii) Hence sketch its graph.
(iii) Express $\cos ^{2} x$ in terms of $\cos 2 x$
(iv) Hence find the exact volume of the solid formed when the area bounded by the curve $y=2 \cos ^{-1} \frac{x}{3}$, the y-axis and the line $y=2 \pi$, is rotated about the y-axis.

QUESTION 7 (10 Marks)

COMMENCE A NEW PAGE

(a) Find $\int\left(\sin ^{-1} x+\cos ^{-1} x\right) d x \quad 1$
(b) Solve for $x: \cos ^{-1} x-\sin ^{-1} x=\sin ^{-1}(1-x) \quad 2$
(c) Find the exact area bounded by the curves $y=2 \sin \frac{\pi x}{4}$ and $x=2 \sin \frac{\pi y}{4}$ for $0 \leq y \leq 2$.
(d) (i) Prove
$\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{1}{4} \pi$
(ii) $A B C D$ is a square field in which a goat is tethered to the corner A by means of a rope. The rope is long enough for the goat to be able to just reach the midpoints of $B C$ and $C D$. Let $D A=2 x$.

Find the proportion of the area of the field that the goat cannot reach.

Express your answer in the form $a+b \tan ^{-1}\left(\frac{1}{3}\right)$, where a and b are rational numbers.

END OF EXAMINATION ©

2013 TERM 4 HSC TASK: MATHEMATICS EXTENSION I

MATHEMATICS Extension 1 : Question.../.
Page tof 2

Suggested Solutions
1a)
$\int x^{2} e^{x^{3}} d x$

$$
=\frac{1}{3} e^{x^{3}}+c
$$

b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}} \quad \cos 2 x \\
& =\cos ^{2} x-\sin x \\
& \begin{array}{l}
=\lim _{x \rightarrow 0} \frac{1-(1-25}{x^{2}} \\
=\lim _{x \rightarrow 0} \frac{x \sin ^{2} x}{x^{2}}
\end{array} \\
& =2 \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =2 \times 1 \times 1 \\
& =2
\end{aligned}
$$

Altenatioply $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$

$$
\begin{aligned}
& =2 \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \\
& =2 \times 1 \times 1 \text { or } 2 \times 11^{2} \\
& =2
\end{aligned}
$$

e) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)+\tan ^{-1}\left(\tan \frac{7 \pi}{8}\right)$

$$
\begin{aligned}
& =-\frac{\pi}{3}+\tan ^{-1}\left(\tan \left(\frac{\pi}{8}\right)\right) \quad-\frac{\pi}{2}<x<\frac{\pi}{2} \\
& =-\frac{\pi}{3}+\tan ^{-1}\left(-\tan \frac{\pi}{8}\right) \\
& =-\frac{\pi}{3}-\frac{\pi}{8} \\
& =-\frac{11}{24}
\end{aligned}
$$

2 marks

Imark for the correct substr.

2 marks

1 onark fortse correct swisstr.
\}imark
$1 / 2$ mark for $-\frac{\pi}{3}$ mark for $-\frac{\pi}{9}$ t mark for correct answer

$$
\begin{aligned}
& N B \cdot \frac{\pi}{3}+\frac{7 \pi}{8} \\
&=\frac{13 \pi}{24}
\end{aligned} / \mathrm{mL}
$$

$$
=-2 \sin A \sin B
$$

$$
\text { Proof: } \alpha H S=\cos A \cos B-\sin A \sin B
$$

$$
-(\cos A \cos B+\sin A \sin B)
$$

$$
\therefore \angle H S=R H S \quad \quad Q R D
$$

1 mark to correctly expand $\cos (A+B) \& 1$

$$
=-2 \leq \pi A \sin B
$$ mark to correctll expand $\cos (A-B)$.

(ii) Hence, find $\cos 75^{\circ}-\cos 15^{\circ}$

$$
\begin{aligned}
& =\cos \left(45^{\circ}+30^{\circ}\right)-\cos \left(45^{\circ}-30^{\circ}\right) \\
& =-2 \sin 45^{\circ} \sin 30^{\circ} \\
& =-2 \times \frac{1}{2} \times \frac{1}{2}
\end{aligned}
$$

$$
=-\frac{1}{\sqrt{2}}
$$

$$
=-\frac{\sqrt{2}}{2}
$$

\qquad

I mark for
using the
outcome in (i) I mark for
using the
outcome in (i) I mark for
using the
outcome in (i) correctly.

1 mark for correct solution
\}
\VCALLISTOSStaffliomeSiWOHURAH M Fac Admin\Assessment infolSuggested Mk sols template_V4,doc

- Page 2 -

Question 2
a)

$$
\frac{d}{d x}\left(\cos ^{-1} 2 x\right)=\frac{-1}{\sqrt{1-4 x^{2}}} \cdot 2
$$

b)

$$
\begin{align*}
\iint^{\frac{1}{2}} \cos ^{-1}(1-2 x) d x & \approx \frac{\frac{1}{2}-0}{6}\left[\frac{1}{2} \cos ^{-1} \theta+4 x \frac{1}{2} \cos ^{-1} \frac{1}{2}+\frac{1}{2} \cos ^{-1} 0\right] \tag{1}\\
& =\frac{1}{12}\left[114+2 \times \pi / 3+\frac{1}{2} \times 0\right] \\
& =\frac{1}{12}(\pi 4+2 \pi / 3) \\
& =0.23998 \cdots \\
& =0.24(2 \alpha) \tag{1}
\end{align*}
$$

c) (1)

$$
\begin{equation*}
R_{H S}=\frac{5 x^{2}+20-16}{x^{2}+4}=\frac{5 x^{2}+4}{x^{2}+4}=\text { LHS } \tag{1}
\end{equation*}
$$

$$
\text { (i1) } \begin{align*}
\int_{\frac{1}{2}}^{0} \frac{5 x^{2}+4}{x^{2}+4} d x & =\int_{\frac{1}{2}}^{0}\left(5-\frac{16}{x^{2}+4}\right) d x \\
& \left.=5 x]_{-\frac{1}{2}}^{0}-16 x x^{\frac{1}{2}} \tan ^{-1} \frac{x}{2}\right]_{-\frac{1}{2}}^{0} \tag{1}\\
& =\frac{5}{2}-8\left(\tan ^{-1} 0-\tan ^{-1}\left(\frac{1}{4}\right)\right) \\
& =0.54017 \ldots \\
& =0.54(204)
\end{align*}
$$

- Kage 3-

Equation of $A B: \quad y+3=\left(\frac{7+3}{-9-4}\right)(x-4)$

$$
\begin{aligned}
& =-\frac{10}{13}(x-4) \\
13 y+39 & =-10 x+40
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad 10 x+13 y-1=0 \tag{1}
\end{equation*}
$$

Lar distance from C to $A B$:

$$
\begin{align*}
h & =\frac{|10 \times 1+13 \times k-1|}{\sqrt{10^{2}+13^{2}}} \\
& =\frac{|9+13 k|}{\sqrt{269}} \tag{i}
\end{align*}
$$

Hence $|A B C|=\frac{1}{2} \sqrt{10^{2}+13^{2}} \cdot|9+13 k|$
1.e $15=\frac{1}{2}|9+13 k|$

$$
\begin{align*}
\therefore 9+13 k & =30 \text { or }-30 \\
\Rightarrow k & =21 \text { or }-3 \tag{1}
\end{align*}
$$

MATHEMATICS Ertension 1 : Question. 3.
(1) $f(x)=\frac{x^{3}-3 x^{2}}{x^{2}-1}$
x untercept $\begin{aligned} & y=0 \quad x^{2}(x-3)=0 \\ & x=0 \text { or } x=3\end{aligned}$
y undercept $x=0 \quad y=0$.
(ii) No Lompontal asymptote. verheal aeymptotes $x= \pm 1$
(111)

$$
\therefore f(x)=(x-3)+\frac{x-3}{x^{2}+1}
$$

as $x \rightarrow \infty \quad \frac{x-3}{x^{2}+1} \rightarrow 0$
$\therefore f(x) \rightarrow x-3$. oblique asymptote
Altematurely

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x^{2}}-\frac{3 x^{2}}{x^{2}} \\
&=\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}} \\
&=\frac{1-1}{x^{2}} \\
& \text { a } x \rightarrow \infty \rightarrow 0 \quad 1 \quad x^{2} \rightarrow 1-1 \rightarrow 1
\end{aligned}
$$

$\therefore f(x) \rightarrow x-3=0$ blique a symptotk
(IV) stat nonamy point when

$$
\begin{aligned}
f^{\prime}(x)=0 \\
x^{\prime} \frac{r}{6}-203
\end{aligned}
$$

No need for further ealevelatiami. to be \&housed. \cdots
\qquad
\qquad

$$
\begin{aligned}
& \left.x^{2}-1\right) x^{3}-\frac{x-3}{3 x^{2}} \\
& \frac{x^{3}-x}{-3 x^{2}+x} \\
& -3 x^{2}+\frac{3}{x-3}
\end{aligned}
$$

MATHEMATICS Extension 2: Question.

As $\frac{9}{a+x^{2}}$ is even $=2 x \quad\left[\tan ^{-1} \frac{x}{3}\right]_{0}^{1}$

$$
=6 \tan ^{-1}(1 / 3)
$$

Marks
Marker's Comments
$\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)$
$\left(\frac{1}{2}\right.$ brance and appropruate atymprote
(t) for plothing tucthung pount accewasely. and showres corendenales tos sale
\qquad
\qquad
\qquad
\qquad
(1) untegnentron

Decimal equiralent anawer 1.93 accopted.
(1) Arusuver (Simplefed)
 $x=\pi / 2$
\qquad
(1) comect sutostitutwon and simplifud quadratic
(1/2) 3 quadretic solutcoms
(1) 3 general. solution:
(12) tert/rejet $x=\pi / 2$.
\qquad
\qquad
\qquad
\qquad
\qquad
"TERM 4 MATHEMATICS EXTENSION 12013 SECTION 4.
a)

$$
\begin{array}{rlr}
\int \frac{6 d x}{\sqrt{(1+2 x)^{3}}} & =\int \frac{6}{\sqrt{u^{3}}} \times \frac{d u}{2} & \frac{d u}{d x}=1+2 x \\
& =3 \int \frac{d u}{u^{3 / 2}} & d x=\frac{d u}{2} \\
& =3\left[-2 u^{-\frac{1}{2}}\right] & \\
& =\frac{-6}{\sqrt{1+2 x}}+C &
\end{array}
$$

(1) integral
wret u
(1) ansuer in terms of x
(b) (i)

$$
\begin{array}{ll}
\text { (i) } \begin{aligned}
& \sqrt{3} \sin \theta-3 \cos \theta=R \sin \theta \cos \alpha-R \cos \theta \sin \alpha \\
\sqrt{3}=R \cos \alpha & 3=R \sin \alpha \\
R^{2}=3+9 & \tan \alpha=\frac{3}{\sqrt{3}} \quad \alpha \sin 1^{0+} Q \\
R=\sqrt{12} & \alpha=\frac{\sqrt{3}}{3} \\
& =2 \sqrt{3} \\
& \\
\therefore y & =2 \sqrt{3} \sin \left(\theta-\frac{\pi}{3}\right)
\end{aligned}
\end{array}
$$

(ii)

Ap’ areat $\frac{\pi}{2}$ and
shifed $\frac{\pi}{3}$ to right

(c)

$$
\begin{aligned}
\text { RHS } & =\cos 2 \theta-\cos 4 \theta \\
& =2 \cos ^{2} \theta-1-\left(2 \cos ^{2} 2 \theta-1\right) \\
& =2 \cos ^{2} \theta-1-2 \cos ^{2} 2 \theta+1 \\
& =2 \cos ^{2} \theta-2 \cos ^{2} 2 \theta
\end{aligned}
$$

(1) double augle formular
(1) answer
(d)

$$
\begin{aligned}
& \int_{-2}^{2} \frac{d x}{\left(x^{2}+4\right)^{2}}=\frac{1}{16} \int_{-2} \frac{16}{\left(x^{2}+4\right)^{2}} d x \\
& =\frac{1}{16}\left[\tan ^{-1} \frac{x}{2}+\frac{2 x}{x^{2}+4}\right]_{-2}^{2} \\
& =\frac{1}{16}\left(\tan ^{-1}(1)+\frac{4}{8}-\tan ^{-1}(-1)-\frac{(-4)}{8}\right) \\
& =\frac{1}{16}\left(\frac{\pi}{4}+\frac{1}{2}-\left(\frac{-\pi}{4}\right)+\frac{1}{2}\right) \\
& =\frac{1}{16}\left(\frac{2 \pi}{4_{2}}+1\right) \\
& =\frac{\pi}{32}+\frac{1}{16} \\
& \text { (1) primitive } \\
& \text { (1) answer }
\end{aligned}
$$

MATHEMATICS EXTENSION 1: Question 5
(c) Continued.
(ii) Given no further information, tank is filled when $\frac{d V}{d t}=0$.

$$
\text { ie. } \begin{aligned}
\pi\left(100-\frac{t^{2}}{100}\right) & =0 \\
\frac{t^{2}}{100} & =100 \\
t & = \pm 100
\end{aligned}
$$

But since $t \geq 0, \quad t=100 \mathrm{~s}$ only.
(iii) $V=100 \pi t-\frac{\pi t^{3}}{300}+c$

When $t \equiv 0, V=0 \quad \therefore=0$.
When $t=100$,

$$
\begin{aligned}
V & =10000 \pi-\frac{1000000 \pi}{300} \\
& =\frac{20000 \pi}{3} \mathrm{~L}
\end{aligned}
$$

Evaluate

ALTERNATIVELY

$$
\begin{aligned}
V & =\int_{0}^{+000} \pi\left(100-\frac{t^{2}}{100}\right) d t \\
& =\left[1000 \pi t-\frac{\pi t^{3}}{300}\right]_{0}^{100} \\
& =\left(10000 \pi-\frac{1000000 \pi}{300}\right)-0 \\
& =\frac{20000 \pi}{3} L
\end{aligned}
$$

Definite integral
Integrate

Evaluate
(i)

$$
\triangle O A B \equiv \triangle O D C(S A S)
$$

$$
\text { Area } \triangle O A B=\frac{1}{2} \cdot 2 \cdot 2 \cdot \sin \theta=2 \sin \theta
$$

Area $\triangle B O C=\frac{1}{2} \cdot 2 \cdot 2 \cdot \sin (\pi-2 \theta)$

$$
=2 \sin 20
$$

Are e Trapezium $A B C D=2 \times 2 \sin \theta+2 \sin 2 \theta$

$$
=4 \sin \theta+2 \sin 2 \theta
$$

OR $\quad h=2 \sin \theta$

$$
\text { OR } \begin{aligned}
h & =2 \sin \theta \\
B C & =2 B M=2 \cdot 2 \cos \theta=4 \cos \theta \\
|A B C D| & =\frac{1}{2}(B C+A D) \times h \\
& =\frac{1}{2}(4 \cos \theta+4) \sin \theta \\
& =4 \cos \theta \sin \theta+4 \sin \theta \\
o r & =2 \sin 2 \theta+4 \sin \theta
\end{aligned}
$$

i) A

$$
\begin{aligned}
& A^{\prime \prime}=-4 \sin \theta-8 \sin 2 \theta \\
& A^{\prime \prime}\left(\frac{\pi}{3}\right)=-2 \sqrt{3}-4 \sqrt{3}=-6 \sqrt{3} \doteqdot-10.39<0
\end{aligned}
$$

$\cap \therefore$ vol max at $\frac{\pi}{3}$
since A is continnow for $0, \theta<\frac{\pi}{2}$, r aby 1 T.P $\theta=\frac{\pi}{3}$ will give aliolete max Ana

$$
\text { max Area }=\frac{6 \sqrt{3}}{2}=3 \sqrt{3} \text { unit 2 }{ }_{H}
$$

$$
\begin{aligned}
& A^{\prime}=4 \cos \theta+4 \cos 2 \theta \text { or } \\
& =-4 \sin ^{2} \theta+4 \cos ^{2} \theta+4 \cos \theta \\
& \text { SP, } A^{\prime}=0 \quad H \cos \theta=-4 \cos 2 \theta \\
& \cos \theta=-\left(2 \cos ^{2} \theta-1\right) \\
& \therefore 2 \cos ^{2} \theta+\cos \theta-1=0 \\
& (2 \operatorname{con} t-1)(\cos \theta+1)=0 \therefore \theta=\frac{\pi}{3} \omega \pi \\
& \text { but } 0<\theta=\frac{\pi}{2} \quad \therefore \theta=\frac{\pi}{3} \text { all }
\end{aligned}
$$

no marks for diagram

1 m
same do not simplify

$$
\sin (\pi-2 \theta)=\sin 2 \theta-\frac{1}{2} n
$$

1 m many students thought the 3 triagles are congment

$$
\therefore 6 \sin \theta
$$

1 m
Many students thargire $A B C O$ is parm^{2}

1 m

$$
\theta=\frac{\pi}{2} \quad 0 \mathrm{~m}
$$

1 m
Many forgot to mention $\theta \neq \pi-\frac{1}{2} m$ students need to mention π lent reject it later
b) $\quad y=2 \cos ^{-1} \frac{x}{3}$
i) $D:-3 \leqslant x \leqslant 3$

$$
R=0 \leq y \leq 2 \pi
$$

ii)

iii) $\cos ^{2} x=\frac{1+\cos 2 x}{2}$
iv) $V d=\int_{\pi}^{2 \pi} \pi x^{2} d y=\pi \int_{\pi}^{2 \pi}\left[3 \cos \left(\frac{y}{2}\right)\right]^{2} d y$

$$
\begin{aligned}
v o l & =9 \pi \int_{\pi}^{2 \pi} \frac{1+\cos y d y}{2} \\
& \left.=\frac{9 \pi}{2}(y+\sin y)\right]_{\pi}^{2 \pi} \\
& =\frac{9 \pi}{2}(2 \pi+\sin 2 \pi-\pi-\sin \pi) \\
& =\frac{9 \pi^{2}}{2} \text { unit }^{3}
\end{aligned}
$$

(i) $\sin ^{-1} x+\cos ^{-1} x=\pi / 2 \quad$ (radians: ! $)$

$$
\begin{aligned}
\therefore \int \sin ^{-1} x+\cos ^{-1} x d x & =\int \frac{\pi}{2} d x \\
& =\frac{\pi x}{2}+k
\end{aligned}
$$

b) Let $\alpha=\cos ^{-1} x, \beta=\sin ^{-1} x$

Take sine of beth sides, noting that $\cos \alpha=x, \sin \alpha=\sqrt{1-x^{2}}, 0 \leqslant \alpha \leqslant \pi$

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
& =\sqrt{1-x^{2}} \sqrt{1-x^{2}}-x \cdot x \\
& =1-x^{2}-x^{2} \\
& =1-2 x^{2} \\
\sin \beta=x, \cos \left(\sin ^{-1}(1-x)\right) & =1-x \\
1-x & =1-2 x \\
2 x^{2}-x & =0 \\
x & =0 \text { or } 1 / 2
\end{aligned}
$$

c)

The curves ore inverses t each the so $A_{1}+A_{2}=A_{2}+A_{3} .\left(\therefore A_{1}=A_{3}\right)$.

$$
\begin{aligned}
A_{1}+A_{2} & =A_{2}+A_{3} \\
A_{2} & =2\left(A_{2}+A_{3}\right)-\left(A_{1}+A_{2}+A_{3}\right) \mid
\end{aligned}
$$

Marks were not deducted if k omitted.

Mark for some sensible combinati d) areas.

$$
\begin{aligned}
\text { c) } \begin{aligned}
(\text { cont }) & =2 \int_{0}^{\text {Surged Solutions }} 2 \sin \frac{\pi x}{4} d x-4 \\
& =4\left[-\frac{4}{\pi} \cos \frac{\pi x}{4}\right]_{0}^{2}-4 \\
& =4\left(0+\frac{4}{\pi}\right)-4 \\
& =\frac{16}{\pi}-4
\end{aligned} \$=\text { Questic }
\end{aligned}
$$

\therefore Common area is $\left(\frac{16}{\pi}-4\right) u^{2}$
d)

$$
\text { i) } \left.\begin{array}{rl}
\text { Let } \alpha & =\tan ^{-1}(1 / 2), \quad 0<\alpha<\pi / 4 \\
\beta & =\tan ^{-1}(1 / 3) \quad 0<\beta<\pi / 4
\end{array}\right\}
$$

But, from *, $0<\alpha+\beta<\pi / 2$
$\therefore n=0$ and $\tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 3)=\pi / 4 \mid$

Mark for a correct integral

Mark for correct ensure:

1 Mark for answer
1 Mark for correct handling of domains.

