QUESTION 1 (13 marks)

- (a) Solve $\log_{e} x + \log_{e} (2 x) = 0$. (2 marks)
- (b) The arc length of a sector of a circle is 6cm. If the circle has radius 3cm, find the area of the sector. (2 marks)

(c) Given that
$$\frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{(x+1)(x+2)}$$

show that
$$\int_{1}^{3} \frac{dx}{(x+1)(x+2)} = \log_{e} \frac{6}{5}$$
 (2 marks)

- (d) The gradient at any point (x,y) on a curve is given by $\frac{dy}{dx} = \frac{x-6}{x}$. If the curve intersects the line x = 1 at y = 2, find where the curve cuts the line x = 3. (3 marks)
- (e) Water evaporates from a lake at a rate $\frac{dV}{dt}$ proportional to the volume V of the water remaining. If 50% of the water evaporates in 20 days, find the percentage of the original volume of water remaining after 50 days without rain. Give your answer to the nearest percentage. (4 marks)

QUESTION 2 (13 marks) Start a new page

(a) Find $\lim_{x \to 0} \frac{\sin 2x}{\tan x}$ (3 marks)

(b) (i) Write down the expansion of $\cos(\alpha + \beta)$. (1 mark)

- (ii) If $\sin \alpha = \frac{2}{3}$, $\frac{\pi}{2} < \alpha < \pi$ and $\cos \beta = \frac{3}{4}$, $0 < \beta < \frac{\pi}{2}$, find the exact value of $\cos (\alpha + \beta)$. (3 marks)
- (c) Differentiate $e^{x^2} \sin x$ with respect to x. (2 marks)

(d) (i) Find
$$\frac{d}{dx}(x \sin x + \cos x)$$
. (2 marks)

(ii) Hence find the value of
$$\int_{\frac{\pi}{2}}^{\pi} x \cos x dx$$
. (2 marks)

QUESTION 3 (13 marks) Start a new page

(a) Simplify $\cos^{-1}x + \cos^{-1}(-x)$. (1 mark)

(b) Find the domain and range of the function
$$y = \frac{1}{3} \sin^{-1} \frac{x}{2}$$
 (2 marks)

(c) Show that
$$\tan^{-1}\frac{1}{2} - \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{2}{9}$$
 (3 marks)

(d) Find the indefinite integrals

(i)
$$\int \frac{dx}{x^2 + 4}$$
 (1 mark)

(ii)
$$\int \frac{xdx}{x^2 + 4}$$
 (1 mark)

(iii)
$$\int \frac{dx}{\sqrt{9-4x^2}}$$
 (2 marks)

(e) If
$$y = \sin^{-1} \sqrt{x}$$
 show that $\frac{dy}{dx} = \frac{1}{\sin 2y}$ (3 marks)

END OF ASSESSMENT