Question 13 Marks

Marks
(a) Find the primitive of $(3 x-2)^{10}$
(b) The gradient of a curve is given by $\frac{d y}{d x}=2 x-3$. What is the equation of the curve if it passes through $(1,5)$
(c) The area enclosed by the curve $y=3 x-x^{2}$, the x-axis, the lines $x=1$ and $x=2$, is rotated about the x-axis. Find the volume of the solid formed. Give your answer in terms of π.
(d) In what ratio does the x axis divide the area of the region bounded by the parabolas $y=3 x-x^{2}$ and $y=x^{2}-x$?

Question 214 Marks \quad Start a new page

(a) Solve $\log _{e}(4-3 x)=2 \log _{e} x$.

4
(b) Differentiate
(i) $\quad \log _{e}\left(3-2 x^{2}\right)$

1
(ii) $2 x \ln 3 x$
(c) If $y=x \log _{e} x$, find:
(i) $\frac{d y}{d x}$.
(ii) Find the coordinates of the stationary point.
(iii) Determine the nature of the stationary point.
(iv) Find the value of y (correct to three decimal places) when $x=0.001$.
(v) Use the information found to sketch the curve $y=x \log x$

Question 3 13 Marks \quad Start a new page

Marks
(a) Find the value of $\int_{-2}^{2} e^{2 x} d x$

2

4

$$
\int_{0}^{1} x e^{-x^{2}} d x=\frac{1}{2}\left(1-\frac{1}{e}\right)
$$

(c) The number of bacteria, N, in a colony after t minutes grows according to the law $\frac{d N}{d t}=k N$, where k is constant.
(i) Show that $N=N_{0} e^{k t}$, where N_{0} is constant, is a solution of $\frac{d N}{d t}=k N$.
(ii) If the number of bacteria is doubled in 200 minutes, find the value of k.
(iii) How long, to the nearest minute, does it take for the number of bacteria to grow to 10 times the original number?
(d) Evaluate $\int_{-1}^{1} x^{2} e^{x} d x$ by using Simpson's rule with three function values. Answer correct to 2 significant figures.

Q 1
(a) $\frac{1}{33}(3 x-2)^{4}+c$
(t)

$$
\begin{aligned}
& y=x^{2}-3 x+c \\
& x=1, y=5 \quad \therefore c=7 \\
& y=x^{2}-3 x+7
\end{aligned}
$$

(c)

$$
\begin{aligned}
v & =\pi \int_{1}^{2}\left(3 x-x^{2}\right)^{2} d x \\
& =\pi \int_{1}^{2}\left(9 x^{2}-6 x^{3}+x^{4}\right) d x \\
& =\left[3 x^{3}-\frac{3}{2} x^{4}+\frac{1}{5} x^{5}\right]_{1}^{2} \\
& =3.2^{3}-\frac{3}{2} \cdot 2^{4}+\frac{1}{5} \cdot 2^{5}-\left(3-\frac{3}{2}+\frac{1}{5}\right) \\
& =4.7 \text { units }^{3}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 3 x-x^{2}=x^{2}-x \\
& 2 x(x-2)=0 \\
& x=0 \\
& A_{0}=\int_{0}^{2}\left(3 x-x^{2}\right) d x-\int_{1}^{2}\left(x^{2}-x\right) d x \\
& =\left[\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}-\left[\frac{1}{3} x^{3}-\frac{x^{2}}{2}\right]_{1}^{2}
\end{aligned}
$$

Q ctd

$$
\begin{aligned}
& A_{0}=\left[\frac{3}{2} \cdot 2^{2}-\frac{2^{3}}{3}-0\right]-\left[\frac{1}{3} \cdot 2^{3}-\frac{2^{2}}{2}-\left(\frac{1}{3}-\frac{1}{2}\right)\right] \\
&=2 \frac{1}{2} \\
& A_{B}=\left|\int_{0}^{1}\left(x^{2}-x\right) d x\right| \\
&=\int_{1}^{0}\left(x^{2}-x\right) d x \\
&=\left[\frac{1}{3} x^{3}-\frac{x^{2}}{2}\right]^{0} \\
&=0-\left(\frac{1}{3}-\frac{1}{2}\right) \\
&=\frac{1}{6} \\
& A_{\text {(1) }}: A_{(2)}=2 \frac{1}{2}: \frac{1}{6} \\
&=15: 1
\end{aligned}
$$

22
(a) $\log _{e}(4-3 x)=\log _{e} x^{2}, x>0$ from original

$$
\begin{aligned}
& 4-3 x=x^{2} \\
& x^{2}+3 x-4=0 \\
& (x+3)(x-1)=0 \\
& x=-3 \text { or } 1, x>0
\end{aligned}
$$

$\therefore x=1$ is only solution
(b)
(i) $\frac{-4 x}{3-2 x^{2}}$
(i)

$$
\begin{aligned}
& 2 x \cdot \frac{3}{3 x}+2 \ln 3 x \\
& =2(1+\ln 3 x)
\end{aligned}
$$

(c)

$$
y=x \ln x
$$

(i) $y^{\prime}=\ln x+1$
(ii) $y^{\prime}=0$ when $x=\frac{1}{e}, y=\frac{-1}{e}$
(iii) $y^{\prime \prime}=\frac{1}{x}$
>0 when $x=\frac{1}{e}$
$\therefore\left(\frac{1}{e},-\frac{1}{e}\right)$ is a local minimuon
(iv) -0.007
(v)

$Q 3$
(a)

$$
\begin{aligned}
\int_{-2}^{2} e^{2 x} d x & =\left[\frac{1}{2} e^{2 x}\right]_{-2}^{2} \\
& =\frac{1}{2}\left(e^{4}-e^{-4}\right)
\end{aligned}
$$

(G)

$$
\begin{aligned}
& \text { 6) } \left.\begin{array}{rl}
\frac{d}{d x}\left(e^{-x^{2}}\right)=-2 x e^{-x^{2}} \\
\begin{array}{rl}
\int_{0}^{1}-2 x e^{-x^{2}} d x & =\left[e^{-x^{2}}\right]_{0}^{1} \\
\int_{0}^{1} x e^{-x^{2}} d x & =-\frac{1}{2}\left[e^{-x^{2}}\right]_{0}^{1} \\
& =-\frac{1}{2}\left(e^{-1}-e^{0}\right) \\
& =-\frac{1}{2}\left(\frac{1}{e}-1\right) \\
& =\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

(c)

$$
\text { (i) } \begin{aligned}
& N=N_{0} e^{k t} \\
& \frac{d N}{d t}=K_{N} N_{0} e^{k t} \\
&=k N \\
& \text { (ii) } \begin{aligned}
2 N_{0} & =N_{0} e^{200 k}, 200 k=\log 2 \\
K & =\frac{\log 2}{200} t \log 2
\end{aligned}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 10 N 0=\frac{N}{200} e^{\frac{t}{200} \log 2} \\
& \frac{t}{200} \log 2=\log 10 \\
& t= \\
& \frac{200 \log 10}{\log 2} \\
& = \\
& \frac{21885 \min \text { (nearest minote) }}{664}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{-1}^{1} x^{2} e^{x} d x & =\frac{1}{3}\left[y_{0}+y_{2}+4 y_{1}\right] \\
& =\frac{1}{3}\left(e^{-1}+e+4 e^{0}\right) \\
& =\frac{1}{3}\left(e^{-1}+e+2\right) \\
& \approx 1.7
\end{aligned}
$$

