

MATHEMATICS (EXTENSION 1)

2011 HSC Course Assessment Task 1 November 29, 2010

General instructions

- Working time 50 minutes.
- Commence each new question on a new page. Write on both sides of the paper.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

NAME:

Class (please \checkmark)

- $\bigcirc~12\mathrm{M3A}$ Mr Lam
- $\bigcirc~12\mathrm{M3B}$ Mr Weiss
- \bigcirc 12M3C Mr Trenwith
- \bigcirc 12M4A Mr Fletcher
- \bigcirc 12M4B Mr Ireland
- $\bigcirc~12\mathrm{M4C}-\mathrm{Mr}$ Rezcallah

PAGES USED:

53

%

QUESTION	1	2	3	4	5	6	Total

9

9

7

10

9

9

Marker's use only.

MARKS

3

Marks

Que	stion 1 (9 Marks)	Commence a NEW page.	Marks
(a)	Given that $\sin A = \frac{2}{3}$ and A is a	acute, find the value of $\sin 2A$.	2
(b)	Find the exact value of $\cos 105^\circ$	· ·	2
(c)	Show that $\frac{1-\tan^2 x}{1+\tan^2 x} = \cos 2x.$		2

(d) Solve the equation
$$2\sin^2 x = 1 + \cos 2x$$
 for $0 \le x \le 2\pi$.

Question 2	(9 Marks)	Commence a NEW page.	Marks
(a) For wh	3		

(a) For what value of k does the equation

$$x^2 + (k-4)x + 9 = 0$$

have real roots?

(b) Solve the equation
$$x^4 = 4(x^2 + 3)$$
. 3

(c) Write
$$2x^2 - 3x + 3$$
 in the form $A(x-1)^2 + B(x-1) + C$. 3

Question 3 (9 Marks)

(a) A monic polynomial of degree 3 has roots -1, 1 and 2. Write the equation of $\mathbf{2}$ the polynomial in the form

Commence a NEW page.

$$P(x) = ax^3 + bx^2 + cx + d$$

The polynomial $P(x) = px^3 + 5x^2 - 3p$ has (x - 2) as a factor. Find the value (b) $\mathbf{2}$ of p.

Let $f(x) = x^3 + 2x^2 + 5x - 4$. (c)

i.	Show that $f(x)$	c) has a root	between $x = 0$ and $x = 1$.	2
----	------------------	---------------	-------------------------------	---

ii. Taking x = 0.5 as an approximation to this root, use one application of 3 Newton's method to find a better approximation to the root.

Quest	tion 4	(7 Marks)	Commence a NEW page.	Marks
(a)	Find	the Cartesian equation of the	point $P(t+1, 2t^2+1)$.	2
(b)	The c i.	urves $y = (x - 1)^2$ and $y = (x$ Find the coordinates of Q .	$(+1)^2$ intersect at the point Q .	2
	ii.	Find the acute angle between answer to the nearest degree.	the tangents to the curves at Q , giving your	3
Quest	tion 5	(10 Marks)	Commence a NEW page.	Marks
(a)	When the re	the polynomial $P(x)$ is divided mainder when $P(x)$ is divided	ed by $(x^2 - 1)$, the remainder is $x - 4$. Find l by $(x + 1)$.	2
(b)	i.	Find the equation of the locus its distance from $A(-3,2)$ is t	s of the point $P(x, y)$ which moves such that twice its distance from $B(3, -4)$.	; 3
	ii.	Describe this locus geometrica	ally.	2
(c)	One c of the	of the roots of $2x^3 + x^2 - 15x$ - other two roots.	-18 = 0 is positive and equal to the product	3
	Find	all the roots of this equation.		
Quest	tion 6	(9 Marks)	Commence a NEW page.	Marks

 $P(2p, p^2)$ and $Q(2q, q^2)$ lie on the parabola $x^2 = 4y$.

- (a) Derive the equation of the normal to the parabola at P.
 (b) The chord PQ passes through the point (0, -2). Find the equation of the chord 3 PQ and show that pq = 2.
- (c) The normals at P and Q intersect at R. Show that R lies on the parabola. 4

End of paper.

BLANK PAGE

Suggested Solutions

Question 1 (Fletcher)

- (a) (2 marks)
 - \checkmark [1] for triangle (or equivalent).
 - \checkmark [1] for final answer in exact form.

$$\sin 2A = 2\sin A \cos A$$
$$= 2 \times \frac{2}{3} \times \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9}$$

(b) (2 marks)

- \checkmark [1] for correct substitution.
- \checkmark [1] for final answer.

$$\cos 105^\circ = \cos(60^\circ + 45^\circ)$$
$$= \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ$$
$$= \left(\frac{1}{2} \times \frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}\right)$$
$$= \frac{1 - \sqrt{3}}{2\sqrt{2}} \left(= \frac{\sqrt{2} - \sqrt{6}}{4}\right)$$

(c) (2 marks)

$$\checkmark$$
 [1] for $\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x}$

 \checkmark [1] for final answer.

$$\frac{1-\tan^2 x}{1+\tan^2 x} = \frac{1-\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x}{1+\frac{\sin^2 x}{\cos^2 x} \times \cos^2 x}$$
$$= \frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin^2 x}$$
$$= \cos 2x$$

- (d) (3 marks)
 - \checkmark [1] for $4\sin^2 x = 1$, or equivalent.
 - $\checkmark \quad [1] \quad \text{for } \sin x = \pm \frac{1}{\sqrt{2}}.$
 - ✓ [1] for all four solutions. If only $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ is written, a maximum of (2 marks) are awarded.

$$2\sin^2 x = 1 + \cos 2x$$
$$2\sin^2 x = 1 + (1 - 2\sin^2 x)$$
$$4\sin^2 x = 1$$
$$\sin^2 x = \frac{1}{2} \quad \Rightarrow \quad \sin x = \pm \frac{1}{\sqrt{2}}$$
$$\therefore x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Question 2 (Rezcallah)

- (a) (3 marks)
 - ✓ [1] for $(k-4)^2 36 \ge 0$.
 - ✓ [1] for $(k 10)(k + 2) \ge 0$.
 - \checkmark [1] for final answer.

$$x^{2} + (k - 4)x + 9 = 0$$
$$\Delta = (k - 4)^{2} - 4(9) = (k - 4)^{2} - 36$$

There will be real roots when $\Delta \ge 0$:

$$(k-4)^2 - 36 \ge 0$$

 $(k-4-6)(k-4+6) \ge 0$
 $(k-10)(k+2) \ge 0$
 $\therefore k \ge 10 \text{ or } k \le -2$

(b) (3 marks)

- \checkmark [1] for making the substitution and transforming into quadratic (or equivalent).
- ✓ [1] for $x^2 = -2, 6$ (or equivalent).
- \checkmark [1] for final answer.

$$x^{4} = 4(x^{2} + 3)$$
$$x^{4} - 4x^{2} - 12 = 0$$

Let $m = x^2$, $m^2 - 4m - 12 = 0$ (m - 6)(m + 2) = 0 $\therefore m = -2, 6$ $\therefore x^2 = -2, 6$

 $x^2 = -2$ has no real solutions.

$$\therefore x = \pm \sqrt{6}$$

(c) (3 marks)

 $\checkmark [1] \text{ for each correct value of } A, B \text{ and } C \\ \text{and writing it in the form specified.}$

$$2x^2 - 3x + 3 \equiv A(x-1)^2 + B(x-1) + C$$
 (b)

By inspection, A = 2. Let x = 1,

$$2 - 3 + 3 = C$$
$$\therefore C = 2$$

Letting x = 0,

$$3 = 2(-1)^{2} + B(-1) + 2$$

$$3 = 2 - B + 2$$

$$-B = -1$$

∴ B = 1
∴ 2x² - 3x + 3 ≡ 2(x - 1)² + 1(x - 1) + 2

Question 3 (Lam)

- (a) (2 marks)
 - \checkmark [-1] for each error.

$$P(x) = ax^3 + bx^2 + cx + d$$

- As P(x) is monic, $\therefore a = 1$.
- The roots are $\alpha = -1$, $\beta = 1$ and $\gamma = 2$.
- Apply the sum of roots,

$$\alpha + \beta + \gamma = -\frac{b}{a}$$
$$-1 + 1 + 2 = -b$$
$$\therefore b = 2$$

Apply the sum of pairs of roots,

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$$
$$(-1)(1) + (-1)(2) + 1(2) = c$$
$$\therefore c = -1$$

Apply the product of roots,

$$\alpha\beta\gamma = -\frac{d}{a}$$
$$(-1)(1)(2) = -d$$
$$\therefore d = 2$$
$$\therefore P(x) = x^3 - 2x^2 - x + 2$$

Alternatively, expand $(x^2 - 1)(x - 2)$.

(2 marks)

- ✓ [1] for applying the factor theorem and evaluating P(2).
- \checkmark [1] for final answer.

$$P(x) = px^3 + 5x^2 - 3p$$

By the factor theorem,

$$P(2) = 0$$

$$\therefore 2^{3}p + 5(2^{2}) - 3p = 0$$

$$8p + 20 - 3p = 0$$

$$5p + 20 = 0$$

$$\therefore p = -4$$

i. (2 marks)

- $\checkmark \quad [1] \text{ for evaluating } f(0) \text{ and } f(1).$
- \checkmark [1] for final statement (or equivalent).

$$f(x) = x^{3} + 2x^{2} + 5x - 4$$

$$f(0) = -4$$

$$f(1) = 1 + 2 + 5 - 4$$

$$= 4$$

As f(0) < 0 and f(1) > 0 and f is continuous for all x, therefore f(x)has a root between x = 0 and x = 1.

(c)

- ii. (3 marks)
 - \checkmark [1] for correct differentiation.
 - ✓ [2] for final answer. Deduct [1] for each error.

$$f(x) = x^{3} + 2x^{2} + 5x - 4$$

$$f'(x) = 3x^{2} + 4x + 5$$

$$f\left(\frac{1}{2}\right) = \frac{1}{8} + 2\left(\frac{1}{4}\right) + \frac{5}{2} - 4 = -\frac{7}{8}$$

$$f'\left(\frac{1}{2}\right) = 3\left(\frac{1}{4}\right) + 4\left(\frac{1}{2}\right) + 5 = \frac{31}{4}$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$= \frac{1}{2} - \frac{-\frac{7}{8}}{\frac{31}{4}}$$

$$= \frac{19}{31} \approx 0.6129 \cdots$$

Note: $f\left(\frac{19}{31}\right) \approx 0.04 \cdots$. Hence $x = \frac{19}{31} \approx 0.6129$ is a better approximation of the root.

Question 4 (Ireland)

(a) (2 marks)

- ✓ [1] for substituting t = x 1 into $y = 2t^2 + 1$.
- ✓ [1] for final answer $y = 2(x-1)^2 + 1$.

$$x = t + 1 \qquad y = 2t^2 + 1$$

Rearrange x = t + 1 and substitute into $y = 2t^2 + 1$:

$$\therefore y = 2(x-1)^2 + 1$$

= 2(x² - 2x + 1) + 1
= 2x² - 4x + 3

(b) i. (2 marks)

 \checkmark [1] for each value of x and y. Equate to solve simultaneously:

$$\begin{cases} y = (x-1)^2 \\ y = (x+1)^2 \\ (x+1)^2 - (x-1)^2 = 0 \\ [(x+1) - (x-1)] [(x+1) + (x-1)] = 0 \\ (2)(2x) = 0 \\ \therefore x = 0 \\ \therefore y = (0-1)^2 = 1 \\ Q(0,1) \end{cases}$$

- ii. (3 marks)
 - \checkmark [1] for both values of m_1 and m_2 .
 - ✓ [1] for correct substitution into $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$. Max [1] for error in this formula.
 - \checkmark [1] for final answer.

$$y = (x - 1)^2$$
 $\frac{dy}{dx} = 2(x - 1)$
 $y = (x + 1)^2$ $\frac{dy}{dx} = 2(x + 1)$

At x = 0, the gradients of the tangents to the curves are

$$m_1 = 2(-1) = -2$$
 $m_2 = 2(1) = 2$

Applying the angle between two lines formula,

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
$$= \left| \frac{2 - (-2)}{1 + (2)(-2)} \right| = \left| \frac{4}{-3} \right|$$
$$\therefore \theta = 53^{\circ} \text{ (nearest degree)}$$

8

Question 5 (Trenwith)

- (a) (2 marks)
 - ✓ [1] for rewriting P(x) as the division identity.
 - \checkmark [1] for final answer.

$$P(x) = (x^{2} - 1)Q(x) + (x - 4)$$

= (x - 1)(x + 1)Q(x) + (x - 4)

Apply the remainder theorem for divison by x + 1:

$$P(-1) = 0 + (-1 - 4) = -5$$

Hence the remainder when dividing P(x) by (x + 1) is R = -5.

- (b) i. (3 marks)
 - $\checkmark \quad [1] \text{ for } PA^2 = 4PB^2.$
 - ✓ [1] for substituting expression into $PA^2 = 4PB^2$.
 - ✓ [1] for $3x^2 30x + 27 + 3y^2 + 36y + 60 = 0$.

$$PA = \sqrt{(x+3)^2 + (y-2)^2}$$

$$PB = \sqrt{(x-3)^2 + (y+4)^2}$$

$$PA = 2PB$$

$$\therefore PA^2 = 4PB^2$$

$$\therefore (x+3)^2 + (y-2)^2$$

$$= 4(x-3)^2 + 4(y+4)^2$$

$$4(x-3)^2 + 4(y+4)^2$$

$$- (x+3)^2 - (y-2)^2 = 0$$

$$4 (x^2 - 6x + 9) + 4 (y^2 + 8y + 16)$$

$$- (x^2 + 6x + 9) - (y^2 - 4y + 4) = 0$$

$$3x^2 - 30x + 27 + 3y^2 + 36y + 60 = 0$$

$$3x^2 - 30x + 3y^2 + 36y + 87 = 0$$

- ii. (2 marks)
 - \checkmark [1] for circle.
 - $\checkmark~~[1]~$ for correct centre and radius.

$$\underbrace{\frac{3x^2 - 30x + 27 + 3y^2 + 36y + 60}{\div 3}}_{\div 3} = \underbrace{0}_{\div 3}$$

$$x^2 - 10x + \underbrace{9}_{-9} + y^2 + 12y + \underbrace{20}_{-20} = \underbrace{0}_{-29}$$

$$x^2 - 10x + 25 + y^2 + 12y + 36$$

$$= -29 + 25 + 36$$

$$(x - 5)^2 + (y + 6)^2 = 32$$
Circle with centre (5 - 6) and redive

Circle with centre (5, -6) and radius $r = 4\sqrt{2}$.

(c) (3 marks)

- ✓ [1] for correctly finding the product of roots.
- \checkmark [1] for $2\alpha^2 + 7\alpha + 6 = 0$.
- \checkmark [1] for final answers.

$$2x^3 + x^2 - 15x - 18 = 0$$

Let the roots be α , β and $\alpha\beta$, where $\alpha\beta > 0$. Apply the product of roots,

$$\alpha\beta \times \alpha\beta = \alpha^2\beta^2 = -\frac{d}{a} = 9$$
$$\therefore \alpha\beta = 3 \tag{5.1}$$

Hence one of the roots is 3. Rearrange,

$$\therefore \alpha = \frac{3}{\beta} \tag{5.2}$$

Apply the sum of roots,

$$\alpha + \beta + \alpha\beta = -\frac{b}{a} = -\frac{1}{2} \tag{5.3}$$

Substitute (5.2) into (5.3),

$$\underbrace{\alpha + \frac{3}{\alpha} + 3}_{\times 2\alpha} = -\frac{1}{2}$$
$$\underbrace{2\alpha^2 + 6 + 6\alpha}_{\times 2\alpha} = -\alpha$$
$$2\alpha^2 + 7\alpha + 6 = 0$$
$$(2\alpha + 3)(\alpha + 2) = 0$$
$$\therefore \alpha = -\frac{3}{2}, -2$$

Hence the roots are $-\frac{3}{2}$, -2 and 3.

Question 6 (Weiss)

- (a) (2 marks)
 - \checkmark [1] for derivation of gradient of normal.
 - $\checkmark~[1]$ for final answer, or equivalent in gradient-intercept form.

$$P(2p, p^2) \qquad Q(2q, q^2)$$

Rearrange $x^2 = 4y$,

$$y = \frac{1}{4}x^2 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{2}x$$

At x = 2p,

$$\frac{dy}{dx} = \frac{1}{2} \times 2p = p$$
$$\therefore m_{\perp} = -\frac{1}{p}$$

Applying the point gradient formula,

$$\frac{y-p^2}{x-2p} = -\frac{1}{p}$$
$$py-p^3 = -x+2p$$
$$\therefore x+py = p^3 + 2p$$

- (b) (3 marks)
 - ✓ [1] for correct application of two-point formula.
 - \checkmark [1] for correct equation of PQ.
 - ✓ [1] for correct substitution of (0, -2) into equation of PQ and conclusion.

Apply the two point formula to find the equation of chord PQ:

$$\frac{y-q^2}{x-2q} = \frac{p^2-q^2}{2p-2q} = \frac{(p-q)(p+q)}{2(p-q)}$$
$$= \frac{p+q}{2}$$
$$y-q^2 = \left(\frac{p+q}{2}\right)x - 2q\left(\frac{p+q}{2}\right)$$
$$y-q^2 = \left(\frac{p+q}{2}\right)x - pq - q^2$$
$$\therefore y = \left(\frac{p+q}{2}\right)x - pq$$

As the chord PQ passes through (0, -2),

$$-2 = 0 - pq$$
$$\therefore pq = 2$$

(c) (4 marks)

✓ [1] for
$$y = p^2 + q^2 + pq + 2$$
.

- $\checkmark \quad [1] \ \text{ for } x = -2(p+q).$
- ✓ [1] for use of pq = 2 in y coordinate.
- $\checkmark~[1]$ for correct substitution and conclusion.

From part (a), the normals at P and Q are

$$\begin{cases} x = -py + p^3 + 2p \\ x = -qy + q^3 + 2q \end{cases}$$

Solving simultaneously by equating,

$$-py + p^{3} + 2p = -qy + q^{3} + 2q$$

$$py - qy = p^{3} - q^{3} + 2p - 2q$$

$$y(p - q) = (p^{3} - q^{3}) + 2(p - q)$$

$$y(p - q) = (p - q)(p^{2} + pq^{2} + q^{2}) + 2(p - q)$$

$$\therefore y = p^{2} + q^{2} + 2 + 2$$

$$= p^{2} + q^{2} + 4$$

$$= p^{2} + 2pq + q^{2}$$

$$= (p + q)^{2}$$

Substitute to find x,

$$x + p(p+q)^{2} = p^{3} + 2p$$

$$x = -p(p+q)^{2} + p^{3} + 2p$$

$$= -p(p^{2} + 2pq + q^{2}) + p^{3} + 2p$$

$$= -pq(2p+q) + 2p$$

$$= -pq(2p+q) + 2p$$

$$= -2(2p+q) + 2p$$

$$= -4p - 2q + 2p$$

$$= -2p - 2q = -2(p+q)$$

Check that R with coordinates x = -2(p+q) and $y = (p+q)^2$ lies on the parabola $x^2 = 4y$.

$$x = -2(p+q)$$

$$\therefore p+q = -\frac{1}{2}x$$

Substitute to y:

$$y = (p+q)^2$$
$$= \left(-\frac{1}{2}x\right)^2 = \frac{1}{4}x^2$$

 $\therefore R$ lies on the parabola as well.