

MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 1
November 25, 2011

General instructions

- Working time - 50 minutes.
- Commence each new question on a new page. Write on both sides of the paper.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.
NAME: \qquad

Class (please \boldsymbol{V})
○ 12M3C - Mr Lowe
O 12M3D - Mr Berry12M3E - Mr Lam12M4A - Mr Fletcher12M4B - Mr Ireland12M4C - Mr Weiss
\# BOOKLETS USED:

Marker's use only.

QUESTION	1	2	3	4	5	Total	$\%$
MARKS	$\overline{9}$	$\overline{9}$	$\overline{7}$	$\overline{9}$	$\overline{15}$	$\overline{48}$	

Question 1 (9 Marks)
Commence a NEW page.
(a) Find the vertex and focus of $(x-4)^{2}=2 y-6$.
(b) Find the equation of the locus of a point $P(x, y)$ which moves such that its distance from the line $x=8$ is twice its distance from the point $(2,0)$.
(c) A parabola has its focus at $(2,-4)$ and its directrix is the x axis.
i. Determine its vertex and write down the equation of the parabola.
ii. What is the length of the latus rectum of the parabola?

Question 2 (9 Marks)
Commence a NEW page.
(a) If α, β and γ are roots of the equation $2 x^{3}-5 x+3=0$, find the value of
i. $\alpha \beta+\alpha \gamma+\beta \gamma$
ii. $\alpha \beta \gamma$

1
iii. $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
iv. $\frac{1}{\alpha^{2}+\beta^{2}+\gamma^{2}}$
(b) The polynomial $x^{3}+2 x^{2}+a x+b$ has a factor of $(x+2)$ and when divided by 3 $(x-2)$ leaves a remainder of 12 . Find the value of a and b.

Question 3 (7 Marks)
Commence a NEW page.
Marks
(a) Write down the equation of the chord of contact of the parabola $x^{2}=8 y$ from the external point $P(4,-6)$. Do not derive the equation.
(b) Given the quadratic equation $x^{2}+(m-6) x-8 m=0$
i. Find the value of m if the roots are reciprocal of one another.
ii. For what values of m does the quadratic $x^{2}+(m-6) x-8 m=0$ have real roots?

Question 4 (9 Marks)
Commence a NEW page.
Marks
(a) i. Show that $(x-1)$ is a factor of $P(x)=x^{3}-6 x^{2}+11 x-6$.
ii. Express $P(x)$ as a product of its factors.
iii. Without using calculus, solve the inequality $x^{4}-6 x^{3}+11 x^{2}-6 x \leq 0$. Hint: a sketch may be useful.
(b) \quad Solve $\left(x+x^{-1}\right)^{2}-6\left(x+x^{-1}\right)+8=0$.

Question 5 (15 Marks)
Commence a NEW page.
$P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$.
$P Q$ is a chord perpendicular to the axis of symmetry of the parabola.

(a) Derive the equation of the tangent to the parabola at point P.
(b) Prove that the equation of the normal at P is $x+p y=2 a p+a p^{3}$

The normal at P cuts the axis of symmetry at G and the parabola again at R.
(c) Find the coordinates of G.
(d) Find the locus of point G as P moves along the parabola.
(e) The tangents at Q and R meet at N. Show that N has coordinates

$$
(a(q+r), a q r)
$$

(f) Prove that $r=-p-\frac{2}{p}$.
(g) Prove that $N G$ is perpendicular to the axis of symmetry.

End of paper.

Blank page

Suggested Solutions

Question 1 (Fletcher)

(a) (3 marks)
$\checkmark \quad$ [1] for correct focal length a.
$\checkmark \quad[1]$ for vertex.
$\checkmark \quad$ [1] for focus.

$$
\begin{gathered}
(x-4)^{2}=2 y-6 \\
(x-4)^{2}=2(y-3)=4 \times \frac{1}{2}(y-3) \\
\therefore a=\frac{1}{2} \quad V(4,3) \quad S\left(4, \frac{7}{2}\right)
\end{gathered}
$$

(b) (3 marks)
$\checkmark \quad$ [1] for correct distance formulae.
$\checkmark \quad$ [1] for correct equation.
$\checkmark \quad$ [1] for correct locus.
Let the point $P(x, y)$ be the variable point that moves.

- The distance from P to $x=8$ is

$$
d_{1}=\sqrt{(x-8)^{2}}
$$

- The distance from P to $(2,0)$ is

$$
d_{2}=\sqrt{(x-2)^{2}+y^{2}}
$$

As P moves s.t. the distance from $(2,0)$ is twice that to $x=8$,

$$
\begin{gathered}
\sqrt{(x-8)^{2}}=2 \sqrt{(x-2)^{2}+y^{2}} \\
(x-8)^{2}=4\left(x^{2}-4 x+4+y^{2}\right)^{2} \\
\therefore x_{-x^{2}}^{2}-16 x+\underset{-16}{64}=4 x_{-x^{2}}^{2}-18 x+{\underset{-16}{ } 6+4 y^{2}}_{3 x^{2}+y^{2}=48}
\end{gathered}
$$

(c) i. (2 marks)

$$
\begin{array}{ll}
\checkmark & \text { [1] }
\end{array} \text { for vertex. } .
$$

$$
\begin{gathered}
V(2,-2) \\
(x-2)^{2}=-4(2)(y+2) \\
(x-2)^{2}=-8(y+2)
\end{gathered}
$$

ii. (1 mark)

Question 2 (Ireland)
(a) $2 x^{3}+0 x^{2}-5 x+3=0$.

Note that $\alpha+\beta+\gamma=-\frac{b}{a}=0$.
i. (1 mark)

$$
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=-\frac{5}{2}
$$

ii. (1 mark)

$$
\alpha \beta \gamma=-\frac{d}{a}=-\frac{3}{2}
$$

iii. (2 marks)
$\checkmark \quad$ [1] for correct expression.
$\checkmark \quad$ [1] for final answer.

$$
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{-\frac{5}{2}}{-\frac{3}{2}}=\frac{5}{3}
$$

iv. (2 marks)
$\checkmark \quad$ [1] for correct expression.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
& \frac{1}{\alpha^{2}+\beta^{2}+\gamma^{2}} \\
= & \frac{1}{(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)} \\
= & \frac{1}{0-2\left(-\frac{5}{2}\right)}=\frac{1}{5}
\end{aligned}
$$

(b) $\checkmark \quad[1]$ for two equations in a and b.
$\checkmark \quad[1]$ each per correct value of a and b.
As $(x+2)$ is a factor of
$P(x)=x^{3}+2 x-a x+b$,

$$
\begin{gather*}
P(-2)=(-2)^{3}+2(-2)^{2}-2 a+b=0 \\
-8+8-2 a+b=0 \\
\therefore b=2 a \tag{1}
\end{gather*}
$$

By the remainder theorem,

$$
\begin{align*}
P(2)= & (2)^{3}+2(2)^{2}+2 a+b=12 \\
& 2 a+b=-4 \tag{2}
\end{align*}
$$

Substitute (1) to (2),

$$
\begin{gathered}
2 a+b=b+b=-4 \\
b=-2 \\
\therefore a=-1
\end{gathered}
$$

Question 3 (Berry)

(a) (2 marks)

$\checkmark \quad$ [1] for correct equation of the chord $x x_{0}=2 a\left(y+y_{0}\right)$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
x^{2}=8 y=4 \times 2 y \\
\therefore a=2
\end{gathered}
$$

The equation of the chord of contact is

$$
x x_{0}=2 a\left(y+y_{0}\right)
$$

From (4, -6) with focal length $a=2$,

$$
\begin{gathered}
4 x=4(y-6) \\
x=y-6 \\
\therefore y=x+6
\end{gathered}
$$

(b) i. (2 marks)

$$
\begin{array}{ll}
\checkmark & {[1] \text { for } \alpha \beta=\frac{c}{a}=1 .} \\
\checkmark & \text { [1] for correct value of } m .
\end{array}
$$

$$
x^{2}+(m-6) x-8 m=0
$$

Roots are $\alpha \& \frac{1}{\alpha}$.

$$
\begin{aligned}
& \alpha \times \frac{1}{\alpha}=\frac{c}{a} \\
& \frac{-8 m}{1}=1 \\
& \therefore m=-\frac{1}{8}
\end{aligned}
$$

ii. (3 marks)

$$
\checkmark \quad[1] \text { for } \Delta=m^{2}+20 m+36
$$

$\checkmark \quad$ [1] for identifying that $\Delta \geq 0$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(m-6)^{2}-4(1)(-8 m) \\
& =m^{2}-12 m+36+32 m \\
& =m^{2}+20 m+36 \\
& =(m+18)(m+2)
\end{aligned}
$$

Real roots occur when $\Delta \geq 0$:

$$
\begin{gathered}
\quad(m+18)(m+2) \geq 0 \\
\therefore m \leq-18 \quad \text { or } \quad m \geq-2
\end{gathered}
$$

Question 4 (Lam)

(a) $P(x)=x^{3}-6 x^{2}+11 x-6$
i. (1 mark)

$$
P(1)=1-6+11-6=0
$$

By the factor theorem, $x-1$ is a factor of $P(x)$.
ii. (3 marks)
$\checkmark \quad$ [3] for correctly factorising.
$\checkmark \quad[2]$ only for $(x-1)(x-6)(x+1)$.
$\checkmark \quad[1]$ for one further error, depending on solution provided.

- By long division,

$$
x-1) \begin{array}{r}
x^{2}-5 x+6 \\
\begin{array}{r}
x^{3}-6 x^{2}+11 x-6 \\
-x^{3}+x^{2}
\end{array} \\
\begin{array}{r}
-5 x^{2}+11 x \\
\frac{5 x^{2}-5 x}{6 x}-6 \\
-6 x+6
\end{array}
\end{array}
$$

$$
\begin{aligned}
\therefore P(x) & =(x-1)\left(x^{2}-5 x+6\right) \\
& =(x-1)(x-2)(x-3)
\end{aligned}
$$

- By guessing $x-2$ is a factor:

$$
\begin{aligned}
P(2) & =2^{3}-6(2)^{2}+11(2)-6 \\
& =8-24+22-6=0
\end{aligned}
$$

Similarly, use factor theorem again for $x-3$ to show it is also a factor.
iii. (2 marks)
$\checkmark \quad[1]$ for correct method (usually correct graph).
If any other graph is (correctly) sketched and resulting in incorrect inequalities (i.e. $P(x) \leq 0$), only [1] is awarded. [0] for incorrect graph and incorrect inequalities (2 errors).
$\checkmark \quad[1]$ for evaluating $P(x) \leq 0$ correctly (i.e. correct inequality)

From the graph, $P(x) \leq 0$ when

$$
0 \leq x \leq 1 \quad \text { or } \quad 2 \leq x \leq 3
$$

Evaluating $x+\frac{1}{x}=4$,

$$
\begin{gathered}
\underbrace{x+\frac{1}{x}}_{\times x}=\underset{\times x}{4} \\
x^{2}+1=4 x \\
x=\frac{4 \pm \sqrt{4}^{2}-4(1)(1)}{2} \\
=\frac{4 \pm \sqrt{12}}{2}=\frac{\not 2(2 \pm \sqrt{3})}{\not 2} \\
=2 \pm \sqrt{3}
\end{gathered}
$$

Question 5 (Lowe/Weiss)
(b) (3 marks)
$\checkmark \quad[1]$ for method which leads to correct solutions.
$\checkmark \quad[1]$ for $x=1$.
$\checkmark \quad[1]$ for $x=2 \pm \sqrt{3}$.
$\checkmark \quad[-1]$ for non exact values.

$$
\left(x+\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+8=0
$$

Let $m=\left(x+\frac{1}{x}\right)$,

$$
\begin{gathered}
m^{2}-6 m+8=0 \\
(m-4)(m-2)=0 \\
\therefore m=2,4 \\
\therefore\left(x+\frac{1}{x}\right)=2,4
\end{gathered}
$$

Evaluating $x+\frac{1}{x}=2$,

$$
\begin{gathered}
\underbrace{x+\frac{1}{x}}_{\times x}=\underset{\times x}{2} \\
x^{2}+1=2 x \\
x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
\therefore x=1
\end{gathered}
$$

(a) (2 marks)
$\checkmark \quad$ [1] for correct gradient.
$\checkmark \quad$ [1] for correct equation.

$$
\begin{gathered}
y=\frac{x^{2}}{4 a} \\
\frac{d y}{d x}=\frac{2 x}{4 a}=\left.\frac{x}{2 a}\right|_{x=2 a p}=\frac{4 a p}{4 a}=p
\end{gathered}
$$

Apply the point gradient formula to find the equation of the tangent,

$$
\begin{gathered}
\frac{y-a p^{2}}{x-2 a p}=p \\
y-a p^{2}=p x-2 a p^{2} \\
+a p^{2} \\
y=p x-a p^{2}
\end{gathered}
$$

(b) (2 marks)
$\checkmark \quad[1]$ for correct gradient.
$\checkmark \quad$ [1] for correct equation.

$$
m_{\perp}=-\frac{1}{p}
$$

Apply the point gradient formula to find the equation of the normal,

$$
\begin{gathered}
\frac{y-a p^{2}}{x-2 a p}=-\frac{1}{p} \\
y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
p y-a p^{3}=-x+2 a p \\
\therefore x+p y=2 a p+a p^{3}
\end{gathered}
$$

(c) (2 marks)
$\checkmark \quad$ [1] for correct point G.
$\checkmark \quad$ [1] for correct locus equation.
At $x=0$, the equation of the normal becomes

$$
\begin{gathered}
p y=2 a p+a p^{3} \\
\therefore y=2 a+a p^{2} \\
\therefore G\left(0,2 a+a p^{2}\right)
\end{gathered}
$$

(d) (1 mark)

The locus of G is $x=0$ (y axis)
(e) (3 marks)
$\checkmark \quad$ [1] for evaluating simultaneous equations involving tangents at Q and R.
$\checkmark \quad[1]$ for finding the x value.
$\checkmark \quad$ [1] for finding the y value.
Equations of tangents at Q and R are

$$
\left\{\begin{array}{l}
y=q x-a q^{2} \\
y=r x-a r^{2}
\end{array}\right.
$$

Equating (1) and (2) to find the point of intersection N,

$$
\begin{gathered}
q x-a q^{2}=r x-a r^{2} \\
q x-r x=a q^{2}-a r^{2} \\
x(q-r)=a\left(q^{2}-r^{2}\right)=a(q-r)(q+r) \\
\therefore x=a(q+r)
\end{gathered}
$$

Substitute (3) to (1) to find the y coordinate:

$$
\begin{aligned}
y & =q(a)(q+r)-a q^{2} \\
& =a q^{2}+a q r-a q^{2} \\
& =a q r \\
\therefore & N(a(q+r), a q r)
\end{aligned}
$$

(f) (2 marks)
$\checkmark \quad[1]$ for $2 a r-2 a p=a p^{3}-a r^{2} p$.
$\checkmark \quad$ [1] for completely showing $r=-p-\frac{2}{p}$.
As $R\left(2 a r, a r^{2}\right)$ lies on the normal from P, substitute its coordinates into the equation
of the normal:

$$
\begin{gathered}
x+\left.p y\right|_{\substack{x=2 a r \\
y=a r^{2}}}=2 a p+a p^{3} \\
2 a r+a p r^{2}=2 a p+a p^{3} \\
2 a r-2 a p=a p^{3}-a p r^{2} \\
2 \not p(r-p)=\not p\left(p^{2}-r^{2}\right) \\
-2(p \rightarrow r)=p \underset{\sim p}{p}(p \rightarrow r)(p+r) \\
\frac{-2}{p}=p+r \\
\therefore r=-p-\frac{2}{p}
\end{gathered}
$$

Alternatively, obtain quadratic in r and solve as quadratic equation.

$$
\begin{aligned}
& \not p p r^{2}+2 \not \phi r-2 \not p p-\not p p^{3}=0 \\
& a=p \quad b=2 \quad c=-\left(2 p+p^{3}\right) \\
& r=\frac{-2 \pm \sqrt{(2)^{2}+4(p)\left(2 p+p^{3}\right)}}{2 p} \\
& =\frac{-2 \pm \sqrt{4+8 p^{2}+4 p^{4}}}{2 p} \\
& =\frac{-2 \pm \sqrt{4\left(p^{2}+1\right)^{2}}}{2 p} \\
& =\frac{-2 \pm 2\left(p^{2}+1\right)}{2 p}=\frac{-2 \pm 2 p^{2}+2}{2 p} \\
& r=\frac{-2+2 p^{2}+2}{2 p} \quad r=\frac{-2-2 p^{2}-2}{2 p} \\
& =\frac{2 p^{2}}{2 p}=p \quad=\frac{-4-2 p^{2}}{2 p}=-p-\frac{2}{p}
\end{aligned}
$$

As $r \neq p$, then $r=-p-\frac{2}{p}$ only.
(g) (2 marks)
$\checkmark \quad[1]$ noting $p=-q$ and substitutes this into coordinates of N.
$\checkmark \quad[1]$ for correct working.
Since $P Q$ is \perp to y axis, $\therefore p=-q$. Also, $r=-p-\frac{2}{p}$.

$$
\begin{aligned}
y & =a q r=a(-p)\left(-p-\frac{2}{p}\right) \\
& =a p\left(p+\frac{2}{p}\right) \\
& =a p^{2}+2 a \\
& \therefore N\left(a(q+r), 2 a+a p^{2}\right)
\end{aligned}
$$

As $G\left(0,2 a+a p^{2}\right)$ and $N\left(a(q+r), 2 a+a p^{2}\right)$, hence $N G$ is perpendicular to the axis of the parabola.

