

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Extension 1 Mathematics Assessment Task 1 Term 4, 2011

Name:_____ Mathematics Class:_____

Time Allowed: 60 minutes + 2 minutes reading time

Total Marks: 46

Instructions:

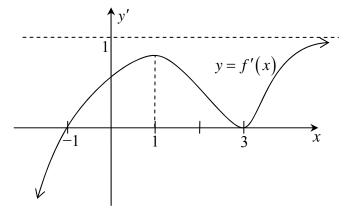
- Attempt all three questions. •
- Start each question in a new booklet. Put your name on every booklet. •
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a • question.

Question	A1-2	A3-8	B 1	B2	С	Total
PE3	·	/14	/3			/17
HE7	/2			/11	/16	/29
						/46

Question 1 (16 marks)

(a) Write A, B, C or D on your answer sheet.

For parts (i) and (ii), consider the gradient function y = f'(x) which is shown in the sketch below.



(i) The stationary points on the graph of y = f(x) consist of:

(A) One local minimum and one horizontal point of inflexion.

- (B) One local maximum and one horizontal point of inflexion.
- (C) One local minimum and one local maximum.
- (D) Two horizontal points of inflexion.

(ii) The graph of y = f(x) has one asymptote. The equation of this asymptote could be:

- (A) x = 1 (B) y = 1
- (C) y = x + 2 (D) None of the above.

(iii) The polynomial $x^3 - 2x^2 - 5x + 6$ factorises to:

- (A) (x+1)(x-2)(x+3) (B) (x-1)(x+2)(x+3)
- (C) (x+1)(x-2)(x-3) (D) (x-1)(x+2)(x-3)

(iv) If $(x-2)^3 (x+1)^2$, $(x+3)^4 (x+1)$ and $(x-2)^5 (x+3)^3$ are all factors of a polynomial P(x), then the smallest possible degree of P(x) is

- (A) 5 (B) 8
- (C) 11 (D) 18

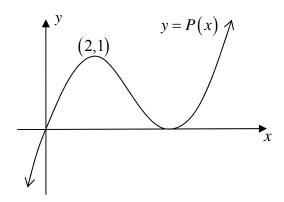
1

1

1

1

Question 1 continued



The diagram shows the graph of the polynomial y = P(x). You are given that P'(0) = 2.

For what values of k will the equation P(x) = kx have exactly three distinct roots?

(A)
$$k > 0$$
 (B) $0 < k < 2$

(C)
$$0 < k < 1$$
 (D) all real k

For the remainder of this section, show full working.

(b)	(i)	Show that $x-2$ is a factor of $x^3 - 4x^2 + 3x + 2$.	1
	(ii)	Sketch the graph of $P(x) = x^3 - 4x^2 + 3x + 2$.	3
	(iii)	Hence solve the inequation $x^3 - 4x^2 + 3x + 2 < 0$.	1

(c) The polynomial P(x) has a remainder of ax-2 when divided by $x^2 - x - 6$, **3** and a remainder of 13 when divided by x-3.

By first finding the value of a, find the remainder when P(x) is divided by x+2.

(d) If $5x^3 + 3x^2 - 7x - 3 = ax(x-1)(x+2) + bx(x-1) + cx - 3$ for all values of x, find **3** the values of a, b and c.

Question 2 (14 marks) Start a new booklet

(a) The polynomial equation $x^3 + bx^2 + cx + d = 0$ has roots α , β and γ . Find a simplified expression for $\frac{\alpha}{\beta\gamma} + \frac{\beta}{\alpha\gamma} + \frac{\gamma}{\alpha\beta}$ in terms of *b*, *c* and *d*. **3**

(b) Consider the function
$$f(x) = \frac{x^2}{x+2}$$

(i)	Write down the equation of the vertical asymptote.	1
(ii)	Show that $f(x) = x - 2 + \frac{4}{x + 2}$.	1
(iii)	Hence write down the equation of the non-vertical asymptote.	1

(iv) Show that
$$f'(x) = \frac{x(x+4)}{(x+2)^2}$$
. 3

(v) Find the coordinates of each stationary point and determine their nature **3** in each case.

2

(vi) Draw a sketch of y = f(x) showing all this information.

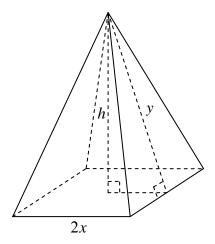
Question 3 (16 marks) Start a new booklet

(a) (i) Show that
$$\frac{1}{(x+h)^2} - \frac{1}{x^2} = -\frac{h(2x+h)}{x^2(x+h)^2}$$
. 2

2

(ii) Hence differentiate the function
$$f(x) = \frac{1}{x^2}$$
 by first principles.

(b) A closed right pyramid has a square base of side length 2x cm, and its triangular faces each have perpendicular height y cm, as shown in the following diagram.



(i)	This pyramid is to be constructed using 400 cm ² of cardboard. Show that $y = \frac{100}{x} - x$.	2
(ii)	Show that the perpendicular height h of the pyramid is given by	2

1) Show that the perpendicular height *h* of the pyramid is given by
$$h^2 = \frac{10000}{x^2} - 200.$$

(iii) Show that the volume V of the pyramid is given by.

$$V = \frac{40}{3} x \sqrt{100 - 2x^2}.$$

(iv) Show that
$$\frac{dV}{dx} = \frac{160(25 - x^2)}{3\sqrt{100 - 2x^2}}$$
. 3

(v) Find the base length and perpendicular height of such a pyramid with maximum volume. Justify your answer.

End of paper

Extension 1 Assessment 1 Solutions

Question 1 (ii) C (iii) D (iv) C (v) B (a) (i) А Let $P(x) = x^3 - 4x^2 + 3x + 2$. (i) (b) $P(2) = 2^{3} - 4(2)^{2} + 3(2) + 2$ = 0 $\therefore x-2$ is a factor of P(x)Let the zeros of P(x) be α , β and 2. (ii) So $\alpha + \beta + 2 = 4$ $2\alpha\beta = -2$ $\alpha + \beta = 2$ $\alpha\beta = -1$ So the quadratic with roots α and β is $x^2 - 2x - 1 = 0$ $x = \frac{2 \pm \sqrt{8}}{2}$ $x = 1 \pm \sqrt{2}$ $1 - \sqrt{2}$ $1 + \sqrt{2}$ 2 1

(iii)
$$x < 1 - \sqrt{2}, 2 < x < 1 + \sqrt{2}$$

(c)
$$P(x) = (x-3)(x+2)Q(x) + ax - 2$$

 $P(3) = 13$
 $13 = 3a - 2$
 $a = 5$
remainder = $P(-2)$
 $= -12$
(d) $5x^3 + 3x^2 - 7x - 3 = ax(x-1)(x+2) + bx(x-1) + cx - 3$
 $(x=1): 5+3-7-3 = c-3 \implies c=1$
 $(x=-2): -40+12+14-3 = 6b-2-3 \implies b=-2$
 $(x=2): 40+12-14-3 = 8a-4+2-3 \implies a=5$

-2

Question 2

(a)
$$\frac{\alpha}{\beta\gamma} + \frac{\beta}{\alpha\gamma} + \frac{\gamma}{\alpha\beta} = \frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha\beta\gamma}$$
$$= \frac{(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)}{\alpha\beta\gamma}$$
$$= \frac{(-b)^2 - 2(c)}{-d}$$
$$= \frac{2c - b^2}{d}$$

(b) (i)
$$x = -2$$

(ii)
$$RHS = x - 2 + \frac{4}{x+2}$$

= $\frac{(x-2)(x+2) + 4}{x+2}$
= $\frac{x^2 - 4 + 4}{x+2}$
= $\frac{x^2}{x+2}$

(iii)
$$y = x - 2$$

(iv)

$$f'(x) = \frac{(x+2) \cdot 2x - x^2 \cdot 1}{(x+2)^2}$$
$$= \frac{2x^2 + 4x - x^2}{(x+2)^2}$$
$$= \frac{x^2 + 4x}{(x+2)^2}$$
$$= \frac{x(x+4)}{(x+2)^2}$$

(v) Stationary points at x = 0, -4.

x	-1	0	1
$\frac{dy}{dx}$	-3	0	$\frac{5}{9}$

so, local minimum at (0,0)

x	-5	-4	-3
$\frac{dy}{dx}$	$\frac{5}{9}$	0	-3

so, local maximum at (-4, -8)

(v) [Alternative solution]

$$f(x) = x - 2 + \frac{4}{x + 2}$$

$$= x - 2 + 4(x + 2)^{-1}$$

$$f'(x) = 1 - 4(x + 2)^{-2}$$

$$= 1 - \frac{4}{(x + 2)^{2}}$$

$$f''(x) = 8(x + 2)^{-3}$$

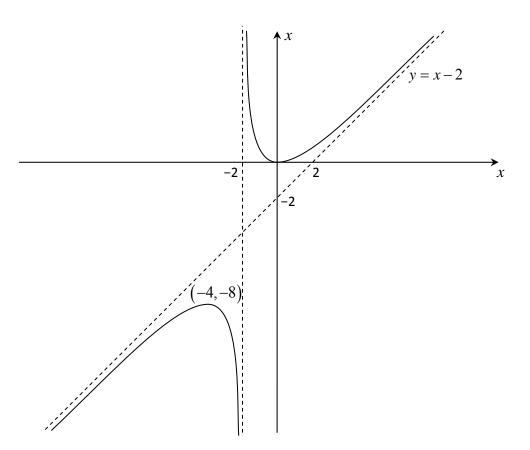
$$= \frac{8}{(x + 2)^{3}}$$
Stat Pts: $1 - \frac{4}{(x + 2)^{2}} = 0$

$$(x + 2)^{2} = 4$$

$$x = 0, -4$$

$$f(0) = 0, f''(0) = 1 > 0$$
so, local min. at (0,0)

$$f(-4) = -8, f''(-4) = -1 < 0$$
so, local max. at (-4, -8)



Question 3

(a) (i)

$$\frac{1}{(x+h)^2} - \frac{1}{x^2} = \frac{x^2 - (x+h)^2}{x^2 (x+h)^2}$$
$$= \frac{x^2 - x^2 - 2xh - h^2}{x^2 (x+h)^2}$$
$$= \frac{-2xh - h^2}{x^2 (x+h)^2}$$
$$= -\frac{h(2x+h)}{x^2 (x+h)^2}$$

(ii)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$
$$= \lim_{h \to 0} \frac{-h(2x+h)}{hx^2(x+h)^2}$$
$$= \frac{-2x}{x^2 \cdot x^2}$$
$$= -\frac{2}{x^3}$$

(b) (i)
$$4x^{2} + 4\left(\frac{1}{2} \cdot 2x \cdot y\right) = 400$$

 $x^{2} + xy = 100$
 $xy = 100 - x^{2}$
 $y = \frac{100}{x} - x$

(ii)
$$h^2 = y^2 - x^2$$
 by Pythagoras' Theorem
 $= \left(\frac{100}{x} - x\right)^2 - x^2$
 $= \frac{10000}{x^2} - 200 + x^2 - x^2$
 $= \frac{10000}{x^2} - 200$

$$V = \frac{1}{3} (2x)^2 h$$

= $\frac{4}{3} x^2 \sqrt{\frac{10000}{x^2} - 200}$
= $\frac{4}{3} x^2 \cdot \frac{10}{x} \sqrt{100 - 2x^2}$
= $\frac{40}{3} x \sqrt{100 - 2x^2}$

(iv)

$$\frac{dV}{dx} = \frac{40}{3} \left[\left(100 - 2x^2 \right)^{\frac{1}{2}} \cdot 1 + x \cdot \frac{1}{2} \left(100 - 2x^2 \right)^{-\frac{1}{2}} \cdot \left(-4x \right) \right]$$
$$= \frac{40}{3} \left[\left(100 - 2x^2 \right)^{\frac{1}{2}} - 2x^2 \left(100 - 2x^2 \right)^{-\frac{1}{2}} \right]$$
$$= \frac{40}{3} \left(100 - 2x^2 \right)^{-\frac{1}{2}} \left[\left(100 - 2x^2 \right) - 2x^2 \right]$$
$$= \frac{160}{3} \left(100 - 2x^2 \right)^{-\frac{1}{2}} \left(25 - x^2 \right)$$
$$= \frac{160 \left(25 - x^2 \right)}{3\sqrt{100 - 2x^2}}$$

$$\frac{dV}{dx} = 0$$

$$x = 5 \quad (x > 0)$$

$$\frac{x \quad 4 \quad 5 \quad 6}{\frac{dV}{dx} \quad \frac{240}{\sqrt{17}} \quad 0 \quad \frac{-880}{3\sqrt{7}}}$$

i.e. maximum Volume when x = 5

Dimensions:

Base:	10 cm
Perp Ht:	$10\sqrt{2}$ cm

(iii)