NORTH SYDNEY GIRLS HIGH SCHOOL

 HSC Extension 1 Mathematics Assessment Task 1

 HSC Extension 1 Mathematics Assessment Task 1 Term 4, 2012

 Term 4, 2012}

Name: \qquad Mathematics Class: 11Mx \qquad

Time Allowed: 50 minutes + 2 minutes reading time

Total Marks: 47

Instructions:

- Attempt all three questions.
- Start each question in a new booklet. Put your name on every booklet.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a question.

Question	1-3	4-5	6	7	8	Total
PE3	13		/14		/8	/25
PE4		12		114		116
HE7					/6	16
	13	12	114	/14	114	147

BLANK PAGE

Section I

5 marks

Attempt Questions 1 - 5
Allow about 8 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 5.

1 Let α, β and γ be the roots of $P(x)=2 x^{3}-5 x^{2}+4 x-9$.
Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(A) $\frac{5}{2}$
(B) $\frac{9}{2}$
(C) $\frac{4}{9}$
(D) $\frac{2}{5}$

2 Let $P(x)=2 x^{3}-x^{2}+2$. Find the remainder when $P(x)$ is divided by $x+1$.
(A) -1
(B) 1
(C) 3
(D) 5

3 Two roots of $4 x^{3}+8 x^{2}-9 x+k=0$ are equal in magnitude, but opposite in sign. Find the value of k.
(A) 2
(B) -2
(C) -46
(D) -18

4 The equation of the chord of contact to the parabola $x^{2}=8 y$ from the point $(3,-2)$ is
(A) $3 x-8 y-8=0$
(B) $3 x-4 y+16=0$
(C) $3 x-8 y+16=0$
(D) $3 x-4 y+8=0$

5 The equation of the normal to the parabola $x^{2}=4 a y$ at the variable point $P\left(2 a p, a p^{2}\right)$ is given by $x+p y=2 a p+a p^{3}$.
How many different values of p are there such that the normal passes through the focus of the parabola?
(A) 0
(B) 1
(C) 2
(D) 3

Section II

42 marks

Attempt Questions 6 - 8
Allow about 42 minutes for this section

Answer each question in a separate writing booklet.
In Questions 6-8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (14 marks) Use a SEPARATE writing booklet
(a) Find the values of A, B, C and D in the identity

$$
2 x^{3}-3 \equiv(x+3)\left(A x^{2}+B x+C\right)+D
$$

(b) The polynomial $p(x)$ is given by $p(x)=x^{3}-4 x^{2}+4 x-3$
(i) Show that $x-3$ is a factor of $p(x)$.
(ii) Express $p(x)$ in the form $(x-3)\left(x^{2}+b x+c\right)$, where b and c are integers.
(c) The cubic equation $3 x^{3}-x^{2}-38 x-24=0$ has roots such that one root is double the reciprocal of a second root.
By letting the roots be $\alpha, \frac{2}{\alpha}, \beta$ and considering the product of all the roots, solve the equation.
(d) Consider the polynomial $p(x)$, where $p(x)=x^{3}-x^{2}-8 x+12$.
(i) Factorise $p(x)$ completely.
(ii) The polynomial $q(x)$ has the form $q(x)=p(x)(x+a)$, where a is a constant chosen so that $q(x) \geq 0$ for all real values of x. Write down the value of a.

Question 7 (14 marks) Use a SEPARATE writing booklet
(a) The tangent at $P\left(4 t, 2 t^{2}\right)$ to the parabola $x^{2}=8 y$ intersects the x-axis at Z. The point M is the midpoint of $P Z$.

(i) Show that the equation of the tangent is $y=t x-2 t^{2}$.
(ii) Show that the M has coordinates $\left(3 t, t^{2}\right) \quad 2$
(iii) Find the Cartesian equation of the locus of M as t varies.
(b) In the diagram below, P is the point $\left(2 a p, a p^{2}\right) . P T$ is the tangent to the parabola at P. $P M$ is perpendicular to the directrix of the parabola.

R and X are the intersections of the tangent with the directrix and x-axis respectively. S is the focus.
The equation of the tangent is given by $y=p x-a p^{2}$. (Do NOT prove this)
(i) Prove that MPST is a rhombus.
(ii) Prove that $\triangle R S P \equiv \triangle R M P$
(iii) Hence prove that RMPS is a cyclic quadrilateral.

Question 8 (14 marks) Use a SEPARATE writing booklet
(a) Consider the curve $y=\frac{(x-1)^{2}}{x^{2}+1}$.
(i) Show that $\frac{d y}{d x}=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}$
(ii) Find the coordinates of the stationary points and determine the nature of the curve's stationary points.
(iii) Write down the equation of the horizontal asymptote.
(iv) Sketch the curve, showing all important features.

You are NOT required to find any points of inflexion.
(b) A curve is defined by the parametric equations $x=t+\frac{1}{t}$ and $y=t^{2}+\frac{1}{t^{2}}$ for $t \neq 0$.
(i) Find the Cartesian equation of the curve.
(ii) By considering the discriminant, or otherwise, find the values of k for which $x=k$ has solutions, where k is a constant.
(iii) Sketch the curve, showing any domain restrictions implied by the above parts

End of paper

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Extension 1 Mathematics Assessment Task 1
 Term 4, 2012

Sample Solutions

MC Answers

1. C
2. A
3. D
4. D
5. B

Section I

1 Let α, β and γ be the roots of $P(x)=2 x^{3}-5 x^{2}+4 x-9$.
Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(A) $\frac{5}{2}$
(B) $\frac{9}{2}$
(C) $\frac{4}{9}$
(D) $\frac{2}{5}$
$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=\frac{\frac{4}{2}}{\frac{9}{2}}=\frac{4}{9}$
2 Let $P(x)=2 x^{3}-x^{2}+2$. Find the remainder when $P(x)$ is divided by $x+1$.
(A) -1
(B) 1
(C) 3
(D) 5
$P(-1)=2(-1)^{3}-(-1)^{2}+2=-1$

So the remainder is -1 .
3 Two roots of $4 x^{3}+8 x^{2}-9 x+k=0$ are equal in magnitude, but opposite in sign.
Find the value of k.
(A) 2
(B) $\quad-2$
(C) -46
(D) -18
Let the roots be $\alpha,-\alpha$ and β.
$\therefore \alpha+(-\alpha)+\beta=-\frac{8}{4}=-2$
$\therefore \beta=-2$
$\therefore x=-2$ is a root of the equation
Substitute $x=-2$ into the equation: $\quad 4(-2)^{3}+8(-2)^{2}-9(-2)+k=0$
$\therefore-32+32+18+k=0 \Rightarrow k=-18$.
4 The equation of the chord of contact to the parabola $x^{2}=8 y$ from the point $(3,-2)$ is
(A) $3 x-8 y-8=0$
(B) $3 x-4 y+16=0$
(C) $3 x-8 y+16=0$
(D) $3 x-4 y+8=0$

The chord of contact is $x x_{0}=2 a\left(y+y_{0}\right) ; a=2 ;\left(x_{0}, y_{0}\right)=(3,-2)$.
$\therefore 3 x=4(y-2)$ is the chord of contact i.e. $3 x-4 y+8=0$.
5 The equation of the normal to the parabola $x^{2}=4 a y$ at the variable point $P\left(2 a p, a p^{2}\right)$ is given by $x+p y=2 a p+a p^{3}$.
How many different values of p are there such that the normal passes through the focus of the parabola?
(A) 0
(B) 1
(C) 2
(D) 3

Only the normal at $(0,0)$ passes through the focus.
OR
Substitute $(0, a)$ into the equation of the normal i.e. $p a=2 a p+a p^{3}$
$\therefore a p^{3}+a p=0 \Rightarrow a p\left(p^{2}+1\right)=0$
$\therefore p=0$ i.e. $(0,0)$ is the only point where the normal passes through the focus.

Section II

Question 6 (14 marks)
(a) Find the values of A, B, C and D in the identity $2 x^{3}-3 \equiv(x+3)\left(A x^{2}+B x+C\right)+D$ $A=2$ (comparing coefficients of x^{2}.)
Substitute $x=-3 \Rightarrow 2(-3)^{3}-3=D$
$\therefore D=-57$.
Substitute $x=0 \Rightarrow-3=3 C-57$
$\therefore 3 C=54 \Rightarrow C=18$.
Substitute $x=1 \Rightarrow 2-3=4(2+B+18)-57$
$\therefore B+20=14$
$\therefore B=-6$
$\therefore A=2, B=-6, C=18, D=-57$
(b) The polynomial $p(x)$ is given by $p(x)=x^{3}-4 x^{2}+4 x-3$
(i) Show that $x-3$ is a factor of $p(x)$.

Find $p(3): \quad p(3)=3^{3}-4 \times 3^{2}+4 \times 3-3=0$
$\therefore x-3$ is a factor of $p(x)$.
(ii) Express $p(x)$ in the form $(x-3)\left(x^{2}+b x+c\right)$,
where b and c are integers.
From (i): $\quad p(x)=(x-3)\left(x^{2}+B x+1\right), B \in \mathbb{R}$
Find $p(1): \quad p(1)=1-4+4-3=-2$
$\therefore p(1)=-2=(1-3)(2+B)$
$\therefore 2+B=1 \Rightarrow B=-1$
$\therefore p(x)=(x-3)\left(x^{2}-x+1\right)$
(c) The cubic equation $3 x^{3}-x^{2}-38 x-24=0$ has roots such that one root is double the reciprocal of a second root. By letting the roots be $\alpha, \frac{2}{\alpha}, \beta$ and considering the product of all the roots, solve the equation.
$\alpha \times \frac{2}{\alpha} \times \beta=-\frac{-24}{3}=8$
$\therefore 2 \beta=8 \Rightarrow \beta=4$
$\therefore x-4$ is a factor of $3 x^{3}-x^{2}-38 x-24=0$.
$\therefore 3 x^{3}-x^{2}-38 x-24=(x-4)\left(3 x^{2}+B x+6\right), B \in \mathbb{R}$
Substitute $x=1: \quad 3-1-38-24=(-3)(9+B)$
$\therefore 9+B=20$
$\therefore B=11$
$\therefore 3 x^{3}-x^{2}-38 x-24=(x-4)\left(3 x^{2}+11 x+6\right)$
$\therefore 3 x^{3}-x^{2}-38 x-24=(x-4)(3 x+2)(x+3)$
$\therefore 3 x^{3}-x^{2}-38 x-24=0 \Rightarrow x=-3,-\frac{2}{3}, 4$
(d) Consider the polynomial $p(x)$, where $p(x)=x^{3}-x^{2}-8 x+12$.
(i) Factorise $p(x)$ completely.

Test $x= \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
$p(1)=1-1-8+12=4$
$p(-1)=-1-1+8+12=18$
$p(2)=8-4-16+12=0$
$\therefore x-2$ is a factor.
$\therefore p(x)=x^{3}-x^{2}-8 x+12=(x-2)\left(x^{2}+B x-6\right), B \in \mathbb{R}$.
Consider $p(1)=4$:

$$
\begin{aligned}
& p(1)=4 \Rightarrow 4=(-1)(B-5) \\
& \therefore B-5=-4 \Rightarrow B=1
\end{aligned}
$$

$\therefore p(x)=x^{3}-x^{2}-8 x+12$
$=(x-2)\left(x^{2}+x-6\right)$
$=(x-2)^{2}(x+3)$
(ii) The polynomial $q(x)$ has the form $q(x)=p(x)(x+a)$, where a is a constant chosen so that $q(x) \geq 0$ for all real values of x. Write down the value of a.
$q(x)=(x+a) p(x) \geq 0$
$\therefore q(x)=(x-2)^{2}(x+3)^{2}$
$\therefore a=3$

Question 7 (14 marks)
(a) The tangent at $P\left(4 t, 2 t^{2}\right)$ to the parabola $x^{2}=8 y$ intersects the x-axis at Z. The point M is the midpoint of $P Z$.

(i) Show that the equation of the tangent is $y=t x-2 t^{2}$.

Parametric	Cartesian
$x=4 t \Rightarrow \frac{d x}{d t}=4$	$y=\frac{1}{8} x^{2}$
$y=2 t^{2} \Rightarrow \frac{d y}{d t}=4 t$	$\therefore y^{\prime}=\frac{1}{4} x$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{4 t}{4}=t$	At $P\left(4 t, 2 t^{2}\right), y^{\prime}=\frac{1}{4} \times 4 t=t$
$\therefore y-2 t^{2}=t(x-4 t)$	
$\therefore y=t x-2 t^{2}$	

(ii) Show that the M has coordinates $\left(3 t, t^{2}\right)$

Substitute $y=0: \quad Z$ has coordinates $(2 t, 0)$
M is the midpoint of $Z(2 t, 0)$ and $P\left(4 t, 2 t^{2}\right)$.
$\therefore M$ has coordinates $\left(\frac{2 t+4 t}{2}, \frac{0+2 t^{2}}{2}\right)=\left(3 t, t^{2}\right)$.
(iii) Find the Cartesian equation of the locus of M as t varies.

Let $x=3 t$ and $y=t^{2}$.
$x=3 t \Rightarrow t=\frac{x}{3}$
$\therefore y=\left(\frac{x}{3}\right)^{2}$
$\therefore x^{2}=9 y$
So the locus of M is $x^{2}=9 y$.
(b) In the diagram below, P is the point $\left(2 a p, a p^{2}\right) . P T$ is the tangent to the parabola at P. $P M$ is perpendicular to the directrix of the parabola.

R and X are the intersections of the tangent with the directrix and x-axis, respectively. S is the focus.
The equation of the tangent is given by $y=p x-a p^{2}$. (Do NOT prove this)
(i) Prove that MPST is a rhombus.
M has coordinates $(2 a p,-a)$.
So using the diagram, $S T=a+a p^{2}=P M$.
Using the locus definition of a parabola, $S P=P M$.

$$
\begin{aligned}
\therefore S T & =P M=S P=a+a p^{2} . \\
T M^{2} & =(0-2 a p)^{2}+\left(-a p^{2}+a\right)^{2} \\
& =4 a^{2} p^{2}+a^{2} p^{4}-2 a^{2} p^{2}+a^{2} \\
& =a^{2} p^{4}+2 a^{2} p^{2}+a^{2} \\
& =\left(a p^{2}+a\right)^{2}
\end{aligned}
$$

Alternative:

Prove that $P T \& S M$ are perpendicular
Also prove that $S M$ and $P T$ have the SAME midpoint.
$\therefore S T=P M=S P=T M=a+a p^{2}$.
(ii) Prove that $\triangle R S P \equiv \triangle R M P$
$S P=P M \quad$ (shown above)
$\angle S P R=\angle M P R \quad$ (diagonals of rhombus)
$P R$ is common.
$\therefore \Delta R S P \equiv \triangle R M P$
(iii) Hence prove that $R M P S$ is a cyclic quadrilateral.

$$
\begin{aligned}
\angle P S R & =\angle P M R & & \text { (matching sides cong. } \Delta \mathrm{s}) \\
& =90^{\circ} & & (\text { given })
\end{aligned}
$$

Question 8 (14 marks)
(a) Consider the curve $y=\frac{(x-1)^{2}}{x^{2}+1}$.
(i) Show that $\frac{d y}{d x}=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{2}+1\right) \times 2(x-1)-(x-1)^{2} \times 2 x}{\left(x^{2}+1\right)^{2}}=\frac{2(x-1)\left[\left(x^{2}+1\right)-x(x-1)\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2(x-1)(1+x)}{\left(x^{2}+1\right)^{2}}=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(ii) Find the coordinates of the stationary points and determine the nature of the curve's stationary points.
Stationary points when $y^{\prime}=0$ i.e. $2\left(x^{2}-1\right)=0$.
$\therefore x= \pm 1$
Stationary points are at $(1,0)$ and $(-1,2)$
NB Test only the numerator as $\left(x^{2}+1\right)^{2}>0$

x	-2	-1	0	1	2
y^{\prime}	6	0	-2	0	6
	$/$	-	1	-	$/$

$(1,0)$ is a rel. min. turning point and $(-1,2)$ is a rel. max. turning point.
(iii) Write down the equation of the horizontal asymptote.

$$
y=1 . \quad \text { Why? } \quad \lim _{x \rightarrow \infty} \frac{(x-1)^{2}}{x^{2}+1}=1
$$

(iv) Sketch the curve, showing all important features.

You are NOT required to find any points of inflexion.
x-int: $x=0$; y-int: $\quad y=1$; No symmetry

(b) A curve is defined by the parametric equations $x=t+\frac{1}{t}$ and $y=t^{2}+\frac{1}{t^{2}}$ for $t \neq 0$.
(i) Find the Cartesian equation of the curve.

$$
\begin{aligned}
y & =t^{2}+\frac{1}{t^{2}} \\
& =\left(t+\frac{1}{t}\right)^{2}-2 \\
& =x^{2}-2
\end{aligned}
$$

(ii) By considering the discriminant, or otherwise, find the values of k for which $x=k$ has solutions, where k is a constant.

Considering the discriminant

$x=t+\frac{1}{t}=k$
$\therefore t^{2}-t k+1=0$
$\therefore \Delta=k^{2}-4$
To have solutions, $\Delta \geq 0$.
$\therefore k^{2}-4 \geq 0$
$\therefore(k-2)(k+2) \geq 0$
$\therefore k \leq-2, k \geq 2$

Or otherwise

For $t>0, t+\frac{1}{t} \geq 2$ and so if $t+\frac{1}{t}=k$ then $k \geq 2$.
Similarly, if $t<0$ then $t+\frac{1}{t} \leq-2$ and so $k \leq-2$
$\therefore k \leq-2, k \geq 2$
(iii) Sketch the curve, showing any domain restrictions implied by the above parts

Part (ii) gives the domain restrictions on the locus i.e. $x \leq-2, x \geq 2$ as the values of k are the possible values that x can take.

End of solutions

