

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Extension 1 Mathematics Assessment Task 1 Term 4, 2012

Name:_____

Mathematics Class: 11Mx_____

Time Allowed: 50 minutes + 2 minutes reading time

Total Marks: 47

Instructions:

- Attempt all three questions.
- Start each question in a new booklet. Put your name on every booklet.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a question.

Question	1-3	4-5	6	7	8	Total
PE3	/3		/14		/8	/25
PE4		/2		/14		/16
HE7					/6	/6
	/3	/2	/14	/14	/14	/47

BLANK PAGE

Section I

5 marks Attempt Questions 1 – 5 Allow about 8 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5.

1 Let α , β and γ be the roots of $P(x) = 2x^3 - 5x^2 + 4x - 9$. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. (A) $\frac{5}{2}$ (B) $\frac{9}{2}$ (C) $\frac{4}{9}$ (D) $\frac{2}{5}$

2 Let
$$P(x) = 2x^3 - x^2 + 2$$
. Find the remainder when $P(x)$ is divided by $x + 1$.
(A) -1 (B) 1 (C) 3 (D) 5

3 Two roots of $4x^3 + 8x^2 - 9x + k = 0$ are equal in magnitude, but opposite in sign. Find the value of k.

(A) 2 (B) -2 (C) -46 (D) -18

4 The equation of the chord of contact to the parabola $x^2 = 8y$ from the point (3, -2) is

- (A) 3x-8y-8=0 (B) 3x-4y+16=0(C) 3x-8y+16=0 (D) 3x-4y+8=0
- (C) 3x 8y + 16 = 0 (D) 3x 4y + 8 = 0

5 The equation of the normal to the parabola $x^2 = 4ay$ at the variable point $P(2ap, ap^2)$ is given by $x + py = 2ap + ap^3$.

How many different values of p are there such that the normal passes through the focus of the parabola?

(A) 0 (B) 1 (C) 2 (D) 3

Section II

42 marks Attempt Questions 6 – 8 Allow about 42 minutes for this section

Answer each question in a separate writing booklet. In Questions 6 - 8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (14 marks) Use a SEPARATE writing booklet

(a) Find the values of A, B, C and D in the identity
$$2x^3 - 3 \equiv (x+3)(Ax^2 + Bx + C) + D$$

(b) The polynomial p(x) is given by $p(x) = x^3 - 4x^2 + 4x - 3$

- (i) Show that x-3 is a factor of p(x). 1
- (ii) Express p(x) in the form $(x-3)(x^2+bx+c)$, 2 where *b* and *c* are integers.

3

3

- (c) The cubic equation $3x^3 x^2 38x 24 = 0$ has roots such that one root is double the reciprocal of a second root. By letting the roots be $\alpha, \frac{2}{\alpha}, \beta$ and considering the product of all the roots, solve the equation.
- (d) Consider the polynomial p(x), where $p(x) = x^3 x^2 8x + 12$.
 - (i) Factorise p(x) completely.
 - (ii) The polynomial q(x) has the form q(x) = p(x)(x+a), where *a* is a constant chosen so that $q(x) \ge 0$ for all real values of *x*. Write down the value of *a*.

Question 7 (14 marks) Use a SEPARATE writing booklet

(a) The tangent at $P(4t, 2t^2)$ to the parabola $x^2 = 8y$ intersects the *x*-axis at *Z*. The point *M* is the midpoint of *PZ*.

(ii) Show that the *M* has coordinates $(3t, t^2)$ 2

2

3

3

2

- (iii) Find the Cartesian equation of the locus of *M* as *t* varies.
- (b) In the diagram below, *P* is the point $(2ap, ap^2)$. *PT* is the tangent to the parabola at *P*. *PM* is perpendicular to the directrix of the parabola.

R and *X* are the intersections of the tangent with the directrix and *x*-axis respectively. *S* is the focus.

The equation of the tangent is given by $y = px - ap^2$. (Do NOT prove this)

- (i) Prove that *MPST* is a rhombus.
- (ii) Prove that $\Delta RSP \equiv \Delta RMP$
- (iii) Hence prove that *RMPS* is a cyclic quadrilateral.

(a)	Consi	Consider the curve $y = \frac{(x-1)^2}{x^2+1}$.				
	(i)	Show that $\frac{dy}{dx} = \frac{2(x^2 - 1)}{(x^2 + 1)^2}$	2			
	(ii)	Find the coordinates of the stationary points and determine the nature of the curve's stationary points.	3			
	(iii)	Write down the equation of the horizontal asymptote.	1			
	(iv)	Sketch the curve, showing all important features. You are NOT required to find any points of inflexion.	2			
(b)	A curv	we is defined by the parametric equations $x = t + \frac{1}{t}$ and $y = t^2 + \frac{1}{t^2}$ for $t \neq 0$.				

(i)	Find the Cartesian equation of the curve.	2
(ii)	By considering the discriminant, or otherwise, find the values of k for which $x = k$ has solutions, where k is a constant.	2
(iii)	Sketch the curve, showing any domain restrictions implied by the above parts	2

End of paper

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Extension 1 Mathematics Assessment Task 1 Term 4, 2012

Sample Solutions

MC Answers

- 1. C
- 2. A
- 3. D
- 4. D
- 5. B

Section I

Let α , β and γ be the roots of $P(x) = 2x^3 - 5x^2 + 4x - 9$. 1 Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. (A) $\frac{5}{2}$ (B) $\frac{9}{2}$ $\frac{2}{5}$ (D) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = \frac{\frac{4}{2}}{\frac{9}{2}} = \frac{4}{9}$ Let $P(x) = 2x^3 - x^2 + 2$. Find the remainder when P(x) is divided by x + 1. 2 (B) 1 3 5 (C) (D) $P(-1) = 2(-1)^{3} - (-1)^{2} + 2 = -1$ So the remainder is -1. Two roots of $4x^3 + 8x^2 - 9x + k = 0$ are equal in magnitude, but opposite in sign. 3 Find the value of *k*. (A) 2 -2(C) -18**(B)** -46Let the roots be α , $-\alpha$ and β . $\therefore \alpha + (-\alpha) + \beta = -\frac{8}{4} = -2$ $\therefore \beta = -2$ $\therefore x = -2$ is a root of the equation Substitute x = -2 into the equation: $4(-2)^3 + 8(-2)^2 - 9(-2) + k = 0$ $\therefore -32 + 32 + 18 + k = 0 \Longrightarrow k = -18.$ The equation of the chord of contact to the parabola $x^2 = 8y$ from the point (3, -2) is 4 (B) 3x - 4y + 16 = 0(D) 3x - 4y + 8 = 0(A) 3x - 8y - 8 = 03x - 8y + 16 = 0(C) The chord of contact is $xx_0 = 2a(y + y_0); a = 2; (x_0, y_0) = (3, -2).$ $\therefore 3x = 4(y-2)$ is the chord of contact i.e. 3x - 4y + 8 = 0. 5 The equation of the normal to the parabola $x^2 = 4ay$ at the variable point $P(2ap, ap^2)$ is given by $x + py = 2ap + ap^3$. How many different values of p are there such that the normal passes through the focus of the parabola? (A) 2 3 0 1 (C) (D) Only the normal at (0, 0) passes through the focus. OR Substitute (0, *a*) into the equation of the normal i.e. $pa = 2ap + ap^{3}$ $\therefore ap^3 + ap = 0 \Longrightarrow ap(p^2 + 1) = 0$

 $\therefore p = 0$ i.e. (0, 0) is the only point where the normal passes through the focus.

Section II

Question 6 (14 marks)

Find the values of A, B, C and D in the identity $2x^3 - 3 \equiv (x+3)(Ax^2 + Bx + C) + D$ (a) 4 A = 2 (comparing coefficients of x^2 .) Substitute $x = -3 \Longrightarrow 2(-3)^3 - 3 = D$ $\therefore D = -57.$ Substitute $x = 0 \Longrightarrow -3 = 3C - 57$ $\therefore 3C = 54 \Longrightarrow C = 18$. Substitute $x = 1 \Longrightarrow 2 - 3 = 4(2 + B + 18) - 57$ $\therefore B + 20 = 14$ $\therefore B = -6$ $\therefore A = 2, B = -6, C = 18, D = -57$ The polynomial p(x) is given by $p(x) = x^3 - 4x^2 + 4x - 3$ (b) Show that x - 3 is a factor of p(x). 1 (i) $p(3) = 3^3 - 4 \times 3^2 + 4 \times 3 - 3 = 0$ Find p(3): $\therefore x-3$ is a factor of p(x). Express p(x) in the form $(x-3)(x^2+bx+c)$, 2 (ii) where *b* and *c* are integers. $p(x) = (x-3)(x^2 + Bx + 1), B \in \mathbb{R}$ From (i): p(1) = 1 - 4 + 4 - 3 = -2Find p(1): $\therefore p(1) = -2 = (1-3)(2+B)$ $\therefore 2 + B = 1 \Longrightarrow B = -1$ $\therefore p(x) = (x-3)(x^2 - x + 1)$ The cubic equation $3x^3 - x^2 - 38x - 24 = 0$ has roots such that one root is double the (c) reciprocal of a second root. By letting the roots be $\alpha, \frac{2}{\alpha}, \beta$ and considering the product 3 of all the roots, solve the equation. $\alpha \times \frac{2}{\alpha} \times \beta = -\frac{-24}{3} = 8$

 $\therefore 2\beta = 8 \implies \beta = 4$ $\therefore x - 4 \text{ is a factor of } 3x^3 - x^2 - 38x - 24 = 0.$ $\therefore 3x^3 - x^2 - 38x - 24 = (x - 4)(3x^2 + Bx + 6), B \in \mathbb{R}$ Substitute x = 1: 3 - 1 - 38 - 24 = (-3)(9 + B) $\therefore 9 + B = 20$ $\therefore B = 11$ $\therefore 3x^3 - x^2 - 38x - 24 = (x - 4)(3x^2 + 11x + 6)$ $\therefore 3x^3 - x^2 - 38x - 24 = (x - 4)(3x + 2)(x + 3)$ $\therefore 3x^3 - x^2 - 38x - 24 = 0 \implies x = -3, -\frac{2}{3}, 4$ (d) Consider the polynomial p(x), where $p(x) = x^3 - x^2 - 8x + 12$.

(i) Factorise p(x) completely.

Test
$$x = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$$

 $p(1) = 1 - 1 - 8 + 12 = 4$
 $p(-1) = -1 - 1 + 8 + 12 = 18$
 $p(2) = 8 - 4 - 16 + 12 = 0$
 $\therefore x - 2$ is a factor.

$$\therefore p(x) = x^3 - x^2 - 8x + 12 = (x - 2)(x^2 + Bx - 6), B \in \mathbb{R}.$$

Consider $p(1) = 4$:

$$p(1) = 4 \Longrightarrow 4 = (-1)(B-5)$$

$$\therefore B-5 = -4 \Longrightarrow B = 1$$

$$\therefore p(x) = x^3 - x^2 - 8x + 12$$

= $(x-2)(x^2 + x - 6)$
= $(x-2)^2(x+3)$

(ii) The polynomial q(x) has the form q(x) = p(x)(x+a), where *a* is a constant chosen so that $q(x) \ge 0$ for all real values of *x*. Write down the value of *a*.

$$q(x) = (x+a) p(x) \ge 0$$

$$\therefore q(x) = (x-2)^2 (x+3)^2$$

$$\therefore a = 3$$

1

Question 7 (14 marks)

(a) The tangent at $P(4t, 2t^2)$ to the parabola $x^2 = 8y$ intersects the x-axis at Z. The point M is the midpoint of PZ.

(i) Show that the equation of the tangent is $y = tx - 2t^2$.

Parametric	Cartesian			
$x = 4t \Longrightarrow \frac{dx}{dt} = 4$	$y = \frac{1}{8}x^2$			
$y = 2t^2 \Longrightarrow \frac{dy}{dt} = 4t$	$\therefore y' = \frac{1}{4}x$			
$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t}{4} = t$	At $P(4t, 2t^2), y' = \frac{1}{4} \times 4t = t$			
$\therefore y - 2t^2 = t(x - 4t)$				
$\therefore y = tx - 2t^2$				

(ii) Show that the *M* has coordinates
$$(3t, t^2)$$

Substitute $y = 0$: *Z* has coordinates $(2t, 0)$
M is the midpoint of $Z(2t, 0)$ and $P(4t, 2t^2)$.
 $\therefore M$ has coordinates $\left(\frac{2t+4t}{2}, \frac{0+2t^2}{2}\right) = (3t, t^2)$.

(iii) Find the Cartesian equation of the locus of *M* as *t* varies.

Let
$$x = 3t$$
 and $y = t^2$.
 $x = 3t \Longrightarrow t = \frac{x}{3}$
 $\therefore y = \left(\frac{x}{3}\right)^2$
 $\therefore x^2 = 9y$

So the locus of *M* is $x^2 = 9y$.

2

2

(b) In the diagram below, *P* is the point $(2ap, ap^2)$. *PT* is the tangent to the parabola at *P*. *PM* is perpendicular to the directrix of the parabola.

R and *X* are the intersections of the tangent with the directrix and *x*-axis, respectively. *S* is the focus.

The equation of the tangent is given by $y = px - ap^2$. (Do NOT prove this)

(i) Prove that *MPST* is a rhombus.

M has coordinates (2ap, -a).

So using the diagram, $ST = a + ap^2 = PM$.

Using the locus definition of a parabola, SP = PM.

$$\therefore ST = PM = SP = a + ap^{2}.$$

$$TM^{2} = (0 - 2ap)^{2} + (-ap^{2} + a)^{2}$$

$$= 4a^{2}p^{2} + a^{2}p^{4} - 2a^{2}p^{2} + a^{2}$$

$$= a^{2}p^{4} + 2a^{2}p^{2} + a^{2}$$

$$= (ap^{2} + a)^{2}$$

$$\therefore ST = PM = SP = TM = a + ap^{2}.$$

Alternative:

Prove that *PT* & *SM* are perpendicular Also prove that *SM* and *PT* have the SAME midpoint.

(ii) Prove that $\Delta RSP \equiv \Delta RMP$

SP = PM	(shown above)
$\angle SPR = \angle MPR$	(diagonals of rhombus)
<i>PR</i> is common.	
$\therefore \Delta RSP \equiv \Delta RMP$	(SAS).

(iii) Hence prove that *RMPS* is a cyclic quadrilateral.

$$\angle PSR = \angle PMR$$
 (matching sides cong. Δs)
= 90° (given)

3

3

Question 8 (14 marks)

(a) Consider the curve
$$y = \frac{(x-1)^2}{x^2+1}$$
.
(i) Show that $\frac{dy}{dx} = \frac{2(x^2-1)}{(x^2+1)^2}$
 $\frac{dy}{dx} = \frac{(x^2+1) \times 2(x-1) - (x-1)^2 \times 2x}{(x^2+1)^2} = \frac{2(x-1)[(x^2+1) - x(x-1)]}{(x^2+1)^2}$
 $= \frac{2(x-1)(1+x)}{(x^2+1)^2} = \frac{2(x^2-1)}{(x^2+1)^2}$

3

1

2

(ii) Find the coordinates of the stationary points and determine the nature of the curve's stationary points.

Stationary points when y' = 0 i.e. $2(x^2 - 1) = 0$.

 $\therefore x = \pm 1$

Stationary points are at (1, 0) and (-1, 2)

NB Test only the numerator as $(x^2 + 1)^2 > 0$

x	-2	-1	0	1	2
<i>y</i> ′	6	0	-2	0	6
	/	_	\	_	/

(1, 0) is a rel. min. turning point and (-1, 2) is a rel. max. turning point.

(iii) Write down the equation of the horizontal asymptote.

y = 1. Why?
$$\lim_{x \to \infty} \frac{(x-1)^2}{x^2+1} = 1$$

(iv) Sketch the curve, showing all important features. You are NOT required to find any points of inflexion. *x*-int: x = 0; *y*-int: y = 1; No symmetry

(b) A curve is defined by the parametric equations $x = t + \frac{1}{t}$ and $y = t^2 + \frac{1}{t^2}$ for $t \neq 0$.

2

2

(i) Find the Cartesian equation of the curve. $y = t^{2} + \frac{1}{t^{2}}$ $= \left(t + \frac{1}{t}\right)^{2} - 2$

$$\binom{t}{t} = x^2 - 2$$

(ii) By considering the discriminant, or otherwise, find the values of k for which x = k has solutions, where k is a constant.

Considering the discriminant

$$x = t + \frac{1}{t} = k$$

$$\therefore t^{2} - tk + 1 = 0$$

$$\therefore \Delta = k^{2} - 4$$

To have solutions, $\Delta \ge 0$.

$$\therefore k^{2} - 4 \ge 0$$

$$\therefore (k - 2)(k + 2) \ge 0$$

$$\therefore k \le -2, k \ge 2$$

Or otherwise
For $t > 0$, $t + \frac{1}{t} \ge 2$ and so if $t + \frac{1}{t} = k$ then $k \ge 2$
Similarly, if $t < 0$ then $t + \frac{1}{t} \le -2$ and so $k \le -2$

$$\therefore k \le -2, k \ge 2$$

(iii) Sketch the curve, showing any domain restrictions implied by the above 2 parts

Part (ii) gives the domain restrictions on the locus i.e. $x \le -2$, $x \ge 2$ as the values of k are the possible values that x can take.

End of solutions