NORTH SYDNEY GIRLS HIGH SCHOOL
 HSC Extension 1 Mathematics Assessment Task 1 Term 4, 2013

Name: \qquad Mathematics Class: 11Mx \qquad
Student Number: \qquad
Time Allowed: 55 minutes +2 minutes reading time
Total Marks: 42

Instructions:

- Attempt all questions.
- Start each question in a new booklet. Put your name on every booklet.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a question.

Question	1	2	3-5	6	7	8 a	$8 \mathrm{~b}, \mathrm{c}$	Total
PE3	11			/6	13		17	117
PE4		1		17				18
HE7			13		19	/5		117
	11	11	13	113	112	15	17	142

Section I

5 marks

Attempt Questions 1-5

Use the multiple choice answer sheet for Questions 1-5

1 One of the factors of $P(x)=a x^{3}-7 x^{2}+k x+4$ is $(x-4)$ and the remainder when $P(x)$ is divided by $(x-1)$ is -6 .

Which of the following is correct?
(A) $16 a+k=-27$ and $a+k=-3$
(B) $16 a+k=27$ and $a+k=3$
(C) $16 a+k=-27$ and $a+k=3$
(D) $16 a+k=27$ and $a+k=-3$

2 Two points $P\left(2 t, t^{2}\right)$ and $Q\left(2 s, s^{2}\right)$ lie on the parabola $x^{2}=4 y$. It is known that $t s=-4$. What are the coordinates of the midpoint of $P Q$?
A) $\left(\frac{-8}{t}, \frac{16}{t^{2}}\right)$
B) $\left(\frac{t^{2}-4}{t}, \frac{t^{4}+16}{2 t^{2}}\right)$
C) $\left(-t, \frac{17 t^{2}}{2}\right)$
D) $\left(\frac{2 t^{2}-4}{t}, \frac{t^{4}+16}{t^{2}}\right)$

3 The derivative of a function is given as $f^{\prime}(x)=\frac{x^{2}}{x-2}$. Which of the following could be true of the original function $y=f(x)$ at the point where $x=0$?
A) There is a horizontal point of inflection
B) There is a minimum turning point
C) There is a maximum turning point
D) The gradient is not defined

4 The chord of contact from an external point $A\left(x_{0}, y_{0}\right)$ to the general parabola $x^{2}=4 a y$ has equation $x x_{0}=2 a\left(y+y_{0}\right)$. From what external point are the tangents to the parabola $x^{2}=6 y$ to be drawn so that $2 x-3 y-3=0$ is the chord of contact?
A) $(1,1)$
B) $(2,1)$
C) $(1,-3)$
D) $(2,-3)$

5 What is the derivative of $\frac{x}{\sqrt{1-2 x}}$?
A) $\frac{1-x}{(1-2 x) \sqrt{1-2 x}}$
B) $\frac{1+x}{\sqrt{1-2 x}}$
C) $\frac{1-3 x}{(1-2 x) \sqrt{1-2 x}}$
D) $\frac{1+x-2 x^{2}}{\sqrt{1-2 x}}$

Section II

38 marks

Attempt Questions 6-8

Answer each question in a SEPARATE writing booklet. Extra writing paper is available.
In Questions 6-8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (13 marks) Use a SEPARATE writing booklet.
a) By writing down factors, or otherwise, construct a monic polynomial of the form $x^{3}+b x^{2}+c x+d$ which has zeros $1,2+\sqrt{2}, 2-\sqrt{2}$.
b) Write $x^{3}-x^{2}-4 x$ in the form $A(x-1)^{3}+B(x-1)^{2}+C$
c) The parabola has parametric equations $x=2 a t$ and $y=a t^{2}$. A tangent and normal have been drawn at a variable point $A\left(2 a p, a p^{2}\right)$ which lies on the parabola.

(i) Show that the equation of the tangent at the point A is $y=p x-a p^{2}$
(ii) The tangent cuts the x axis at T. Find the coordinates of T.
(iii) The equation of the normal at A is $x+p y=2 a p+a p^{3}$. Do NOT show this.

A line through T parallel to the axis of the parabola cuts the normal at R. Show that the coordinates of R are $\left(a p, a p^{2}+a\right)$.
(iv) Show that the locus of R is a parabola and state the equation of its directrix.

Question 7 (12 marks) Use a SEPARATE booklet.
a) Solve $x^{3}-2 x^{2}-7 x+2=0$.
b) Let $P(x)=-2 x^{3}+k x^{2}-m x+5$. Show that if $P(x)$ is to have any stationary points, then $k^{2}-6 m \geq 0$
c) Consider the curve given by the equation $y=\frac{(x-1)^{2}}{x+1}$.
(i) Show that there are stationary points at $x=-3$ and $x=1$, and determine 3 their nature.
(ii) Show that $\frac{(x-1)^{2}}{x+1}=x-3+\frac{4}{x+1}$
(iii) Sketch the curve showing all important features.

Question 8 (12 marks) Use a SEPARATE booklet
a) The city council has decided to build a skateboard ramp for its teenagers. The structure will consist of two levels, H and K and a ramp, as shown in the diagram. The engineers believe that if the ramp has a gradient of greater than 3 at any point, it will be too dangerous to use.
A cross-section of the proposed ramp is shown below.

The ramp $A B C$ is given by the equation $y=\frac{8 x^{2}}{15}-\frac{31 x}{15}+3$ for $0 \leq x \leq 5$.
(i) Use the information given in the cross-section to write down the coordinates of the point C. The point A is $(0,3)$.
(ii) Determine the maximum gradient of the ramp over this domain.
(iii) What is the greatest height that level K may be constructed so that the ramp is deemed safe? Give your answer correct to 1 decimal place.
b) The parametric equations of a curve are $x=t^{2}+1$ and $y=\frac{1}{t}$.

Without eliminating t,
(i) show that $\frac{d y}{d x}=\frac{1}{2}$ at $t=-1$
(ii) find the equation of the tangent at the point where $t=-1$
c) (i) If $P(x)=a x^{3}+b x^{2}+c x+d$ show that $P(x)-P(\gamma)$ has a factor $(x-\gamma)$.
(ii) Hence show that the polynomial $P(x)-P(\gamma)$ has three distinct roots if

$$
(b-3 a \gamma)(b+a \gamma)-4 a c>0
$$

Solutions HSC Ext 1 assessment Term 42013
1.

$$
\begin{gather*}
P(4)=0 \Rightarrow \begin{array}{c}
64 a-7 \times 16+4 k+4=0 \\
16 a+k-27=0 \\
\therefore 16 a+k=27 \\
\end{array} \quad[\div 4] \\
P(1)=-6 \Rightarrow a-7+k+4=-6 \\
a+6=-3 \tag{D}
\end{gather*}
$$

2. $\quad t_{s}=-4$

$$
\therefore s=-\frac{4}{t}
$$

Midpoint $\left(\frac{2 t+2 s}{2}, \frac{t^{2}+s^{2}}{2}\right)=\left(t+s_{2} \frac{t^{2}+s^{2}}{2}\right)$

$$
\begin{align*}
& =\left(t-\frac{4}{t}, \frac{t^{2}+\frac{16}{t^{2}}}{2}\right) \tag{B}\\
& =\left(\frac{t^{2}-4}{t}, \frac{t^{4}+16}{2 t^{2}}\right)
\end{align*}
$$

子 $\quad f^{\prime}(x)=\frac{x^{2}}{x-2}$

x	-1	0	1
$f^{\prime}(x)$	$-1 / 3$	0	-1

Horizontal pt of inflexion at $x=0$
4. $\quad x^{2}=6 y \quad \Rightarrow \quad 4 a=6$

$$
2 a=3
$$

Chord of contact $x x_{0}=3\left(y+y_{0}\right)$

$$
\begin{equation*}
x x_{0}-3 y-3 y_{0}=0 \tag{B}
\end{equation*}
$$

$\therefore x_{0}=2$ and $y_{0}=1$ to match with $2 x-3 y-3=0$
5.

$$
\begin{array}{rlr}
\frac{d}{d x}\left(\frac{x}{\sqrt{1-2 x}}\right) & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} & u=x \\
& =\sqrt{1-2 x}-x \times \frac{-1}{\sqrt{1-2 x}} & u^{\prime}=1 \\
& =\frac{(1-2 x)+x}{(1-2 x) \sqrt{1-2 x}}=\frac{1-x}{(1-2 x) \sqrt{1-2 x}} \tag{A}
\end{array}
$$

$$
\begin{array}{rlrl}
u=x & v & =(1-2 x)^{\frac{1}{2}} \\
u^{\prime} & =1 & v^{\prime} & =\frac{1}{2}(1-2 x)^{2} /-\frac{1}{2} \\
& =-\frac{1}{\sqrt{1-2 x}}
\end{array}
$$

Quepliono
(a) Roots 1, $2+\sqrt{2}, 2-\sqrt{2}$

$$
\begin{aligned}
\therefore P(x) & =(x-1)\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right) \\
& =(x-1)\left(x^{2}-4 x+2\right) \\
& =x^{3}-5 x^{2}+6 x-2
\end{aligned}
$$

$$
\text { where } \begin{aligned}
\alpha+\beta & =2+\sqrt{2}+2-\sqrt{2} \\
& =4 \\
\alpha \beta & =(2+\sqrt{2})(2-\sqrt{2}) \\
& =4-2 \\
& =2
\end{aligned}
$$

6 b) $x^{3}-x^{2}-4 x=A(x-1)^{3}+B(x-1)^{2}+C$

$$
\begin{aligned}
& b=-5 \\
& c=6 \\
& a=-2
\end{aligned}
$$

Sub $x=1:-4=c$

$$
\begin{aligned}
\operatorname{Sin} x=0 \quad 0 & =-A+B+C \\
B & =5
\end{aligned}
$$

However this question has an ever, because there are other solutions, depending on the method used. ALL possible correctly developed solution earned FULL marks. Marks were lost for algebraic mistakes.

$$
\begin{aligned}
& A(x-1)^{3}+B(x-1)^{2}+C=A\left(x^{3}-3 x^{2}+3 x-1\right)+B\left(x^{2}-2 x+1\right)+C \\
\therefore \quad & x^{3}-x^{2}-4 x \\
\text { Coff of } x^{3}= & 1=A \\
\text { Coff if } x^{2} \quad & 1=3 A-B \\
\therefore B & =1
\end{aligned}
$$

Coff of x Here on where the conflict is: $-3 A+2 B=4$ doesnt agree
Equating constants:

$$
\begin{aligned}
0 & =-A+B+C \\
-1 & =C
\end{aligned}
$$

The original question for the test was $A(x-1)^{3}+B(x-1)^{2}+C(x-1)+D$ which has unique solutions $A=1, B=2, C=-3, D=-4$

In cur attempt to make the question easier by eliminating the $(x-1)$ term, we introduced an invalid identity.
we apologise for the eiror. If, in than believe themis an error in a question, please alert the supervisor at the time.
bc)

$$
\begin{aligned}
x & =2 a t \quad y=a t^{2} \\
\frac{d x}{d t} & =2 a \quad \frac{d y}{d t}=2 a t \\
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =\frac{2 a t}{2 a} \\
& =t
\end{aligned}
$$

\therefore At $P\left(\right.$ ap, ap $\left.{ }^{2}\right)$, gradient is p
Tangent:

$$
\begin{aligned}
y-a p^{2} & =p(x-2 a p) \\
y-a p^{2} & =p x-2 a p^{2} \\
y & =p x-a p^{2}
\end{aligned}
$$

(ii) At $T, y=0$

$$
\begin{aligned}
\Rightarrow 0 & =p x-a p^{2} \\
x & =\frac{a p^{2}}{p} \\
& =a p
\end{aligned}
$$

(ii) $($ cont $) \therefore T$ is $(a p, 0)$
(iii) Normal is $x+p y=2 a p+a p^{3}$

$$
\text { At } T, x=a p \quad \begin{aligned}
a p+p y & =2 a p+a p^{3} \\
\text { At } R, x=a p: a p & =a p+a p^{3} \\
y & =a+a p^{2}
\end{aligned}
$$

$\therefore R$ is (ap, $\left.a+a p^{2}\right)$
(iv) Let $x=a p$ and $y=a+a p^{2}$

Sub $\frac{x}{a}=p$ into $y=a+a\left(\frac{x}{a}\right)^{2}$

$$
\begin{gathered}
=a+\frac{x^{2}}{a} \\
a(y-a)=x^{2}
\end{gathered}
$$

\therefore This io a parabola with vertex $(0, a)$ and focal length $\frac{a}{4}$

$$
\begin{aligned}
\text { Directive } & =4 a-\frac{a}{4} \\
& =\frac{3 a}{4}
\end{aligned}
$$

Question 7
a) $x^{3}-2 x^{2}-7 x+2=0$

Possible roots: $\pm 1, \pm 2$

$$
\begin{aligned}
& P(1) \neq 0, \quad P(-1) \neq 0 \\
& \begin{aligned}
P(2) & =8-8-14+2 \\
& \neq 0 \\
P(-2) & =-8-8+14+2 \\
& =0
\end{aligned}
\end{aligned}
$$

\therefore One root is -2

$$
\begin{aligned}
& P(x)=(x+2)\left(x^{2}+k x+1\right) \text { by inspection } \\
& \begin{aligned}
P(1)=-6 \Rightarrow-6 & =(1+2)(1+k+1) \\
& =3(2+k) \\
2+k & =-2 \\
k & =-4
\end{aligned}
\end{aligned}
$$

\therefore Quadratic is $x^{2}-4 x+1=0$

$$
\begin{aligned}
x & =\frac{4 \pm \sqrt{16-4}}{2} \\
& =2 \pm \sqrt{3}
\end{aligned}
$$

Alterative solution Having found that one root is -2 then let other roots be α, β

$$
\begin{gathered}
\alpha+\beta-2=+2 \\
\therefore \alpha+\beta=4 \\
-2 \alpha \beta=-2 \\
\alpha \beta=1 \\
\alpha+\frac{1}{\alpha}=4
\end{gathered}
$$

$$
\begin{array}{r}
\alpha^{2}+1=4 \alpha \\
\alpha^{2}+4 \alpha+1=0 \\
\alpha=\frac{-4 \pm \sqrt{12}}{2} \\
=-2 \pm \sqrt{3}
\end{array}
$$

\therefore Roots are $-2,2+\sqrt{3}, 2-\sqrt{3}$
b)

$$
\begin{aligned}
& P(x)=-2 x^{3}+k x^{2}-m x+5 \\
& P^{\prime}(x)=-6 x^{2}+2 k x-m
\end{aligned}
$$

If $P(x)$ in to have stationary points then
$-6 x^{2}+2 k x-m=0$ must have for 2 solutions
To have solution, $\Delta \geqslant 0$
$1 e \dot{e}(2 k)^{2}-4(-6)(-m) \geqslant 0$

$$
\begin{array}{r}
4 k^{2}-24 m \geqslant 0 \\
k^{2}-6 m \geqslant 0
\end{array}
$$

c) $y=\frac{(x-1)^{2}}{x+1}$
(i)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x+1) 2(x-1)-(x-1)^{2} \times 1}{(x+1)^{2}} \\
& =\frac{2\left(x^{2}-1\right)-\left(x^{2}-2 x+1\right)}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x-3}{(x+1)^{2}} \\
& =\frac{(x+3)(x-1)}{(x+1)^{2}}
\end{aligned}
$$

Slat pts occur when $\frac{d y}{d x}=0$, ie when $x=-3$,

Themis a discontinuity

$$
\text { at } x=-1
$$

There in a maximum turning point at $(-3,-8)$ and a minimuin thenieg point at $(1,0)$

Altematively

$$
\begin{aligned}
& \frac{(x-1)^{2}}{x+1}= \frac{x^{2}-2 x+1}{x+1} \\
&x+1) \frac{x-3}{x^{2}-2 x+1} \\
& \frac{x^{2}+x}{-3 x+1} \\
& \frac{-3 x-3}{4} \\
&=\frac{x^{2}-2 x-3+4}{x+1} \\
&=\frac{x^{2}-2 x+1}{x+1} \\
&=\frac{(x-1)^{2}}{x+1} \\
& \therefore\left(\frac{x-1}{x+1}=\right.\left.x-3+\frac{4}{x+1}\right\} \\
&=4+5
\end{aligned}
$$

(iii) Intercept $=(1,0),(0,1)$

Asymptotes $=x=-1$ and $y=x-3$

Question 8
(i) Point $C(5,6)$
(ii) $y=\frac{8 x^{2}}{15}-\frac{31 x}{15}+3 \quad 0 \leq x \leq 5$

$$
\frac{d y}{d x}=\frac{16 x}{15}-\frac{31}{15}
$$

Max gradient will occur when $x=5$ due to ramp beingperabolos

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{16 \times 5}{15}-\frac{31}{15} \\
& =\frac{49}{15} \\
& =3^{4 / 15}
\end{aligned}
$$

(iii) Max gradient is $3 \therefore \frac{16 x}{15}-\frac{31}{15}=3$

$$
\begin{aligned}
x & =4.75 \\
\therefore y & =\frac{8(4.75)^{2}}{15}-\frac{3(\times 4.75)+3}{15} \\
& =5.21 \text { (2d.p. }
\end{aligned}
$$

The level K can be set at 5.2 metres high.
b)

$$
\begin{aligned}
& x=t^{2}+1 \text { and } y=t^{-1} \\
& \frac{d x}{d t}=2 t \frac{d y}{d t}=-\frac{1}{t^{2}} \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =-\frac{1}{t^{2}} \times \frac{1}{2 t} \\
& =-\frac{1}{2 t^{3}}
\end{aligned}
\end{aligned}
$$

At $t=-1, \frac{d y}{d x}=+\frac{1}{2}$

F When $t=-1, x=2$ and $y=-1$
Equation of tangent: $y+1=\frac{1}{2}(x-2)$

$$
2 y+2=x-2
$$

$$
\therefore x-2 y-4=0
$$

c)

$$
\begin{aligned}
P(x) & =a x^{3}+b x^{2}+c x+d \\
P(x)-P(\gamma) & =a\left(x^{3}-\gamma^{3}\right)+b\left(x^{2}-\gamma^{2}\right)+c(x-\gamma)+d-d \\
& =a(x-\gamma)\left(x^{2}+x \gamma+\gamma^{2}\right)+b(x-\gamma)(x+\gamma)+c(x-\gamma) \\
& =(x-\gamma)\left[a x^{2}+a x \gamma+a \gamma^{2}+b x+b \gamma+c\right]
\end{aligned}
$$

$=(x-\gamma)$ is a factor of $P(x)$
(ii) One root will be $x=\gamma$

Other roots will be roots of $\left(a x^{2}+x(a \gamma+b)+a \gamma^{2}+b j+c\right)$ If two districts roots exist to the equation then $\Delta>0$ $=0$

$$
\begin{aligned}
& (a \gamma+b)^{2}-4 a\left(a \gamma^{2}+b \gamma+c\right)>0 \\
& a^{2} \gamma^{2}+2 a b \gamma+b^{2}-4 a^{2} \gamma^{2}-4 a b \gamma-4 a c>0 \\
& b^{2}-3 a^{2} \gamma^{2}-2 a b \gamma-4 a c>0 \\
& (b-3 a \gamma)(b+a \gamma)=b^{2}+a b \gamma-3 a b \gamma-3 a^{2} \gamma^{2} \\
& \therefore(b-3 a \gamma)(b+a \gamma)-4 a c>0
\end{aligned}
$$

