

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC 2015 Extension 1 Mathematics Assessment Task 1 Term 4, 2014

Name:	Mathematics Class: 11Mx

Time Allowed: 55 minutes + 2 minutes reading time

Total Marks: 41

Instructions:

- Attempt all questions.
- Start each question in a new booklet. Put your <u>number</u> on every booklet and any extra writing paper used.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a question.

Question	1 – 3	4 – 5	6a	6b	7a	7b	8 a	8bc	Total
PE3	/3		/4			/4	/3	/9	/23
PE4				/8					/8
HE7		/2			/8				/10
	/3	/2	/4	/8	/8	/4	/3	/9	/41

1 When $2x^3 + x^2 + kx - 4$ is divided by (x - 1) the remainder is 2.

What is the value of *k*?

- (A) –7
- (B) –5
- (C) 1
- (D) 3

2 A function is represented by the parametric equations

$$x = 2t + 1$$
$$y = t - 2$$

Which of the following is the Cartesian equation of the function?

- (A) x 2y + 3 = 0
- (B) x 2y 3 = 0
- (C) x + 2y + 5 = 0
- (D) x 2y 5 = 0

3 The polynomial P(x) is monic and of degree 5. It has a single zero at x = -1 and a double zero at x = 2.

> The other two zeroes are not real. Which of the following equations best represents P(x)?

- (A) $(x-1)(x+2)^2(x^2+bx+c)$, where $b^2-4c > 0$
- (B) $(x+1)(x-2)^2(x^2+bx+c)$, where $b^2-4c > 0$
- (C) $(x+1)(x-2)^2(x^2+bx+c)$, where $b^2-4c < 0$
- (D) $(x-1)(x+2)^2(x^2+bx+c)$, where $b^2-4c < 0$
- 4 Following is the sketch of y = f'(x), where f'(x) is the derivative of the function f(x).

Which of the following graphs is a possible graph of the original function y = f(x)?

Section II 36 marks Attempt Questions 6–8

Answer each question in a SEPARATE writing booklet. Extra writing paper is available.

In Questions 6–8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (12 marks) Use a SEPARATE writing booklet.

- (a) Given that α , β and γ are the roots of the equation $x^3 4x^2 + 3x 1 = 0$, find the value of:
 - (i) $\alpha + \beta + \gamma$ 1 1 1 1

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 1

(iii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

(b) The point $S(4s, 2s^2)$, lies on the parabola as shown below.

The normal at *S* intersects the parabola again at the point $T(4t, 2t^2)$.

(i) Write down the Cartesian equation of the parabola.

1

3

(ii) By finding the equation of the normal, show that *ST* passes through the point $N(0, 4+2s^2)$.

(iii) By finding the equation of the chord *ST*, show that
$$t = -\left(s + \frac{2}{s}\right)$$
. 3

(iv) With reference to the diagram, explain why $s \neq 0$. 1

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) Consider the cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$ where a, b, c and d are real numbers and $a \neq 0$.

Let α , β and γ be the zeroes of f(x).

- (i) Explain why all cubic polynomial functions have a single point of inflexion
 2 where the second derivative is zero.
- (ii) Using part (i) above, show that the *x*-coordinate of the point of inflexion on the curve y = f(x) is given by 3

$$x = \frac{\alpha + \beta + \gamma}{3}$$

3

(iii) The cubic polynomial below has x-intercepts at -1, 3 and 4. If the y-intercept is 24, find the coordinates of the point of inflexion.

The diagram above shows the graph of the parabola $x^2 = 4ay$.

The normal to the parabola at the variable point $P(2at, at^2)$, t > 0, cuts the y-axis at Q. Point R lies on the parabola.

You may assume that the equation of the normal to the parabola at *P* is given by $x + ty = 2at + at^3$ (Do NOT prove.)

- (i) The point *R* is such that *QR* is parallel to the *x*-axis and $\angle PQR > 90^\circ$. **2** Show that the coordinates of *R* are $\left(-2a\sqrt{t^2+2}, at^2+2a\right)$.
- (ii) Let M be the midpoint of RQ. Find the Cartesian equation of the locus of M. 2 (Do NOT consider any possible domain restrictions of the locus)

Question 8 (12 marks) Use a SEPARATE writing booklet.

(a) The polynomial $P(x) = x^3 + ax^2 + bx + 20$ has a factor of x - 5 and leaves a remainder of -10 when divided by x - 3.

Find the values of *a* and *b*.

(b) A curve has parametric equations $x = \frac{1}{t} - 1$ and $y = 2t + \frac{1}{t^2}$

(i) Find
$$\frac{dy}{dx}$$
 in terms of t. 2

- (ii) Find the coordinates of any stationary points and determine their nature.
- (c) Consider the diagram below of the parabola $y = x^2$. Some points (e.g *P*) lie on three distinct normals (*PN*₁, *PN*₂ and *PN*₃) to the parabola.

(i) Show that the equation of the normal to $y = x^2$ at the point (t, t^2) may be written as

$$t^{3} + \left(\frac{1-2y}{2}\right)t + \left(\frac{-x}{2}\right) = 0$$

(ii) For polynomials of the form $p(x) = x^3 + cx + d$, it is known that if the polynomial has 3 distinct roots then $27d^2 + 4c^3 < 0$ (Do NOT prove this.)

Suppose that the normal to $y = x^2$ at three distinct points $N_1(t_1, t_1^2)$, $N_2(t_2, t_2^2)$ and $N_3(t_3, t_3^2)$ all pass through $P(x_0, y_0)$. Show that the coordinates of *P* satisfy $y_0 > 3\left(\frac{x_0}{4}\right)^{\frac{2}{3}} + \frac{1}{2}$

End of paper

2

3

2

(b) A curve has equation $y = \frac{x^2}{(x-1)(x-5)}$.

- (i) By considering when the curve intersects with the line y = k, show that the stationary points of the curve satisfy k(4k + 5) = 0.
- (ii) Write down the coordinates of the stationary points on the curve. 2
- (ii) Sketch the curve showing intercepts, asymptotes and stationary points. **3**
- (a)

Fig. 7 shows the curve $y = \frac{x^2}{1+2x^3}$. It is undefined at x = a; the line x = a is a vertical asymptote.

(i) Write down the value of a correct to 3 sig fig. 1

(ii) Show that
$$\frac{dy}{dx} = \frac{2x - 2x^4}{(1 + 2x^3)^2}$$
 2

(iii) For what values of k, where k is a constant, does the equation $2kx^3 - x^2 + k = 0$ have 3 distinct roots.

(b) Consider the curve $y = x^3 - 4x$

(i) Show that the gradient of the tangent to the curve at the point
$$P(p, p^3 - 4p)$$
 is $3p^2 - 4$

1

- (ii) The tangent at *P* cuts the curve again at the point *R*. 2/3Find the coordinates of *R*.
- (b) Find the value of a, given that

$$x^3 - 4x^2 + a \equiv (x+1)Q(x) + 3$$
, where $Q(x)$ is a polynomial.

It is given that α , β and γ satisfy the equations

$$\alpha + \beta + \gamma = 1$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -5$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -23$$

- (a) Show that $\alpha\beta + \beta\gamma + \gamma\alpha = 3$.
- (b) Use the identity

$$(\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$$

to find the value of $\alpha\beta\gamma$. (2 marks)

- (c) Write down a cubic equation, with integer coefficients, whose roots are α , β and γ . (2 marks)
- (d) Explain why this cubic equation has two non-real roots. (2 marks)
- (e) Given that α is real, find the values of α , β and γ . (4 marks)

A curve is defined by the parametric equations $x = 2t + \frac{1}{t^2}$, $y = 2t - \frac{1}{t^2}$.

- (a) At the point *P* on the curve, $t = \frac{1}{2}$.
 - (i) Find the coordinates of *P*. (2 marks)
 - (ii) Find an equation of the tangent to the curve at *P*. (5 marks)
- (b) Show that the cartesian equation of the curve can be written as

$$(x-y)(x+y)^2 = k$$

where k is an integer.

Find the value of *a*, given that $x^3 - 4x^2 + a \equiv (x + 1)Q(x) + 3$, where Q(x) is a polynomial

(3 marks)

2

(3 marks)

2 A curve is defined by the parametric equations

$$x = \frac{1}{t}, \qquad y = t + \frac{1}{2t}$$

- (a) Find $\frac{dy}{dx}$ in terms of *t*.
- (b) Find an equation of the normal to the curve at the point where t = 1.
- (c) Show that the cartesian equation of the curve can be written in the form

$$x^2 - 2xy + k = 0$$

where k is an integer.

Spare Questions

6 Suppose
$$P(x) = 2x^3 + 5x^2 + 2x + 9$$
, $Q(x) = x^3 + 5x^2 + 5x + 7$ and $P(x) - Q(x) = (x - 1)^2 (x + 2)$.

What is the geometric interpretation of this?

- P(x) and Q(x) are tangent at x = 1 and intersect at x = -2. (A)
- P(x) and Q(x) are intersect at x = 1 and tangent at x = -2. **(B)**
- P(x) and Q(x) are intersect at both x = 1 and x = -2. (C)
- P(x) and Q(x) are tangent at both x = 1 and x = -2. (D)

The equation $x^3 - 2x^2 - x + 1 = 0$ has roots α , β and γ . 4 Which of the following is true?

- $\alpha + \beta + \gamma = -2$ and $\alpha \beta \gamma = -1$ (A)
- $\alpha + \beta + \gamma = -2$ and $\alpha\beta\gamma = 1$ **(B)**
- $\alpha + \beta + \gamma = 2$ and $\alpha \beta \gamma = -1$ (C)
- $\alpha + \beta + \gamma = 2$ and $\alpha \beta \gamma = 1$ (D)

7 Which diagram best represents $P(x) = (x - a)^2(b^2 - x^2)$, where a > b?

If $x + \alpha$ is a factor of $7x^3 + 9x^2 - 5\alpha x$, where $a \neq 0$, what is the value of α ? 8 (A) 2

- $\frac{4}{7}$ (B)
- (C)
- (D) -2

9 A polynomial of degree four is divided by a polynomial of degree two. What is the maximum possible degree of the remainder?

- (A) 3
- 2 **(B)**
- 1 (C)
- (D) 0

10 It is known that (x + 2) is a factor of the polynomial P(x) and that

$$P(x) = (x^2 + x + 1) \times Q(x) + (2x + 3)$$

for some polynomial Q(x).

From this information alone, which of the following can be deduced?

- (A) $Q(-2) = -\frac{1}{3}$
- (B) $Q(-2) = \frac{1}{3}$
- (C) Q(2) = -1
- (D) Q(2) = 1

3 What is the *x*-intercept of the normal to the parabola $x^2 = 4ay$ at the point $(2ap, ap^2)$? (A) $ap(p^2 + 1)$

- (B) $ap(p^2+2)$
- (C) ap^2
- (D) $-ap^2$

Given that $x(2x-1)(x+1) + 3 \equiv 2x^3 + bx^2 + cx + 3$, find the values of *b* and *c*. 2

The cubic equation

$$x^3 + px^2 + qx + r = 0$$

where p, q and r are real, has roots α , β and γ .

(a) Given that

$$\alpha + \beta + \gamma = 4$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 20$

find the values of p and q.

(b) Given further that one root is 3 + i, find the value of r.

The diagram shows a variable point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$.

The normal to the parabola at P intersects the y-axis at Q. The point Q is the midpoint of PR.

The equation of the normal is $x + py - 2ap - ap^3 = 0$. (Do NOT prove this.)

- (i) Find the coordinates of the point Q.
- (ii) The locus of the point R is a parabola.

Find the equation of this parabola in Cartesian form and state its vertex.

(a) When a polynomial P(x) is divided by (x - 1), the remainder is 3. When P(x) is divided by (x + 2), the remainder is -2. Find the remainder when the polynomial is divided by $x^2 + x - 2$.

1

3

(b) The tangent to the curve $y = x^3 - 4x^2 - x + 2$, at a point Q on the curve, intersects 3 the curve again at A(2, -8). Find the co-ordinates of the point Q.

	(i)	Show that 1 is a zero of $P(x)$.	1
	(ii)	Express $P(x)$ as a product of three factors.	3
	(iii)	Sketch the graph of $y = P(x)$. Show clearly all the intercepts with axes. Do not calculate the coordinates of the turning points.	1
	(iv)	Solve the inequality $P(x) \leq 0$.	1
(b)	The	displacement of a particle moving in simple harmonic motion is given by	
		$x = a \cos nt$.	

- (a) Let the roots of the equation $x^3 + 2x^2 3x + 5 = 0$ be α , β and γ .
 - (i) State the values of:

~

. .

Marks

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC 2015 Extension 1 Mathematics Assessment Task 1

Term 4, 2014

Sample Solutions

1 When $2x^3 + x^2 + kx - 4$ is divided by (x - 1) the remainder is 2.

What is the value of *k*?

- (A) –7
- (B) –5
- (C) 1

3

(D)

Let $P(x) = 2x^3 + x^2 + kx - 4$ $\therefore P(1) = 2$ $\therefore 2 + 1 + k - 4 = 2 \implies k = 3$

2 A function is represented by the parametric equations

$$x = 2t + 1$$
$$y = t - 2$$

Which of the following is the Cartesian equation of the function?

(A)
$$x - 2y + 3 = 0$$

(B) x - 2y - 3 = 0

(C) x + 2y + 5 = 0

$$\therefore x = 2(y+2) + 1$$

$$\therefore x = 2y + 5$$

$$\therefore x - 2y - 5 = 0$$

3 The polynomial P(x) is monic and of degree 5. It has a single zero at x = -1 and a double zero at x = 2.

> The other two zeroes are not real. Which of the following equations best represents P(x)?

- (A) $(x-1)(x+2)^2(x^2+bx+c)$, where $b^2-4c>0$
- (B) $(x+1)(x-2)^2(x^2+bx+c)$, where $b^2-4c>0$

(c)
$$(x+1)(x-2)^2(x^2+bx+c)$$
, where $b^2-4c < 0$

(D) $(x-1)(x+2)^2(x^2+bx+c)$, where $b^2-4c<0$

A single root at x = -1 and a double zero at x = 2 means $(x + 1)(x - 2)^2$ The other two zeroes are not real means that for $x^2 + bx + c$) then $b^2 - 4c < 0$.

4 Following is the sketch of y = f'(x), where f'(x) is the derivative of the function f(x).

Which of the following graphs is a possible graph of the original function y = f(x)?

Stationary points are at x = 2, 4 and 6. Looking at the sign of f'(x) either side of x = 2, 4 and 6 means that there is maxima at x = 2, 6 and a minimum at x = 4.

Section II

Question 6 (12 marks)

(a) Given that α , β and γ are the roots of the equation $x^3 - 4x^2 + 3x - 1 = 0$, find the value of:

(i)
$$\alpha + \beta + \gamma$$
 1

$$\alpha + \beta + \gamma = -(-4) = 4$$

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 1

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\sum \alpha \beta}{\alpha \beta \gamma}$$
$$= \frac{3}{-(-1)}$$
$$= 3$$

(iii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

$$\alpha^{2} + \beta^{2} + \gamma^{2} = \left(\sum \alpha\right)^{2} - 2\left(\sum \alpha\beta\right)$$
$$= (-4)^{2} - 2 \times 3$$
$$= 10$$

Markers Comments

Generally well done, though the common errors were associated with incorrectly remembering $\alpha^2 + \beta^2 + \gamma^2 = (\sum \alpha)^2 - 2(\sum \alpha \beta)$

(b) The point $S(4s, 2s^2)$, lies on the parabola as shown below.

The normal at *S* intersects the parabola again at the point $T(4t, 2t^2)$.

(i) Write down the Cartesian equation of the parabola.

$$x = 4s, y = \underset{a}{2}s^{2} \Longrightarrow x^{2} = 4 \times 2y$$

$$\therefore x^{2} = 8y$$

Markers Comments

Generally well done

(ii) By finding the equation of the normal, show that *ST* passes through the point $N(0, 4+2s^2)$.

point
$$N(0, 4+2s^2)$$
.
 $x = 4s \Rightarrow \frac{dx}{ds} = 4$
 $y = 2s^2 \Rightarrow \frac{dy}{ds} = 4s$
 $\frac{dy}{dx} = \frac{\frac{dy}{ds}}{\frac{dx}{ds}}$
 $= \frac{4s}{4}$
 $= s$
 \therefore the gradient of the normal is $-\frac{1}{s}$
 \therefore the normal is $y - 2s^2 = -\frac{1}{s}(x - 4s)$
 $\therefore x + sy = 4s + 2s^3$
Considering the y-intercept i.e. $x = 0$ then $sy = 4s + 2s^3$
 \therefore the normal passes through $N(0, 4+2s^2)$

Markers Comments

Generally well done

1

3

Question 6 (continued)

(iii) By finding the equation of the chord ST, show that $t = -\left(s + \frac{2}{s}\right)$.

$$m_{sT} = \frac{2t^2 - 2s^2}{4t - 4s}$$

= $\frac{2(t - s)(t + s)}{4(t - s)}$
= $\frac{t + s}{2}$
 \therefore chord ST is $y - 2t^2 = \left(\frac{s + t}{2}\right)(x - 4t)$
 \therefore the gradient of NT is also $\frac{s + t}{2}$

$$m_{NT} = \frac{4 + 2s^2 - 2t^2}{0 - 4t}$$

= $-\frac{2 + s^2 - t^2}{2t}$
 $\therefore \frac{t + s}{2} = -\frac{2 + s^2 - t^2}{2t}$
 $\therefore t(t + s) = -(2 + s^2 - t^2)$
 $\therefore ts = -2 - s^2$
 $\therefore t = \frac{-2 - s^2}{s} = -(s + \frac{2}{s})$

Markers Comments

- Generally well done
- Some students could not complete the question as they did not realise that $m_{NT} = m_{ST}$
- Most students substituted $N(0, 4+2s^2)$ into chord ST.
- Some students used $m_{NT} = -\frac{1}{s}$

(iv) With reference to the diagram, explain why $s \neq 0$.

1

At the origin the normal does not re-intersect the parabola and so $s \neq 0$

Markers Comments

- Some students explained the answer algebraically without reference to the diagram.
- Some students did not understand what the question meant for them to do.

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) Consider the cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$ where a, b, c and d are real numbers and $a \neq 0$.

Let α , β and γ be the zeroes of f(x).

(i) Explain why all cubic polynomial functions have a single point of inflexion
 2 where the second derivative is zero.

 $f(x) = ax^{3} + bx^{2} + cx + d$ $\therefore f'(x) = 3ax^{2} + 2bx + c$ $\therefore f''(x) = 6ax + 2b$ = 2(3ax + b)

So there is only one POSSIBLE point of inflexion (POI). Why is it a POI? Consider the graph of y = 2(3ax+b):

The straight line cuts the x-axis at $x = -\frac{b}{3a}$ and so either side of this point the graph

changes sign i.e. f(x) changes in concavity.

 \therefore there is only one POI at $x = -\frac{b}{3a}$.

Markers Comments

Most students did not consider that the 2nd derivative must change sign at $x = -\frac{b}{3a}$.

(ii) Using part (i) above, show that the *x*-coordinate of the point of inflexion on the curve y = f(x) is given by 3

$$x = \frac{\alpha + \beta + \gamma}{3}$$

From (ii) above the point of inflexion is at $x = -\frac{b}{3a}$.

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\therefore \frac{\alpha + \beta + \gamma}{3} = -\frac{b}{3a}$$

$$\therefore \text{ the POI is at } x = \frac{\alpha + \beta + \gamma}{3}.$$

Markers Comments

The most common error was to let a = 1.

Question 7 (continued)

(a) (iii) The cubic polynomial below has x-intercepts at -1, 3 and 4. If the y-intercept is 24, find the coordinates of the point of inflexion.

The equation of the polynomial is y = k(x+1)(x-3)(x-4)With the *y*-intercept of 24 then y = 2(x+1)(x-3)(x-4)

From (iii), the *x*-coordinate of the POI is $x = \frac{-1+3+4}{3} = 2$ So the *y*-coordinate is given by y = 2(2+1)(2-3)(2-4) = 12 \therefore the POI is at (2, 12).

Markers Comments

Students who used $y = ax^3 + bx^2 + cx + d$ in stead of y = a(x+1)(x-3)(x-4) struggled to complete this question accurately.

(b)

The diagram above shows the graph of the parabola $x^2 = 4ay$.

The normal to the parabola at the variable point $P(2at, at^2)$, t > 0, cuts the y-axis at Q. Point R lies on the parabola.

You may assume that the equation of the normal to the parabola at *P* is given by $x + ty = 2at + at^3$ (Do NOT prove.)

(i) The point *R* is such that *QR* is parallel to the *x*-axis and $\angle PQR > 90^\circ$. **2** Show that the coordinates of *R* are $\left(-2a\sqrt{t^2+2}, at^2+2a\right)$.

The y-coordinate of R is the same as that of Q: With $x + ty = 2at + at^3$, let x = 0: $ty = 2at + at^3$ $\therefore y = 2a + at^2$ As R lies on the parabola then $x^2 = 4y$ $\therefore x^2 = 4(2a + at^2)$ $\therefore x = \pm 2\sqrt{2 + t^2}$

R is in the 2nd quadrant and so $x = -2\sqrt{2+t^2}$

Markers Comments

- This question was completed with a high level of accuracy.
- Students were penalised if they did not explain why the *x*-coordinate of *R* is negative

Question 7 (continued)

(b) (ii) Let M be the midpoint of RQ. Find the Cartesian equation of the locus of M. 2 (Do NOT consider any possible domain restrictions of the locus)

$$M \text{ is the midpoint of } \left(-2a\sqrt{t^2+2}, at^2+2a\right) \text{ and } \left(0, at^2+2a\right)$$
$$\therefore M\left(-a\sqrt{t^2+2}, at^2+2a\right)$$
$$\text{Let } x = -a\sqrt{t^2+2} \text{ and } y = at^2+2a$$
$$\therefore t^2 = \frac{y-2a}{a}$$
$$x^2 = a^2\left(t^2+2\right)$$
$$= a^2\left(\frac{y-2a}{a}+2\right)$$
$$= a\left(y-2a+2a\right)$$
$$= ay$$

The locus of *M* is $x^2 = ay$.

This is a parabola with the a quarter the focal length as $x^2 = 4ay$ but vertex at (0, 0).

Markers Comments

The question was generally well completed, though many students attempted to eliminate "a" instead of "t".

Question 8

(a) The polynomial $P(x) = x^3 + ax^2 + bx + 20$ has a factor of x - 5 and leaves a remainder of -10 when divided by x - 3.

Find the values of *a* and *b*.

$$P(5) = 0: 125 + 25a + 5b + 20 = 0 $\therefore 25a + 5b = -145 $\therefore 5a + b = -29 (1) P(3) = -10 27 + 9a + 3b + 20 = -10 $\therefore 9a + 3b = -57 $\therefore 3a + b = -19 (2) (1) - (2): 2a = -10 $\therefore a = -5 \\$ Substitute into (2): $-15 + b = -19 \\ $\therefore b = -4 (2) \\$$$$$$$$

 $\therefore a = -5, b = -4$ Marker's comment:

- Most students recognised that P(5) = 0 and P(2) = -10 and then generally were successful in finding a and b.
 - There are students who cannot solve simultaneous equations without error.

(b) A curve has parametric equations
$$x = \frac{1}{t} - 1$$
 and $y = 2t + \frac{1}{t^2}$
(i) Find $\frac{dy}{dx}$ in terms of t.
 $x = t^{-1} - 1 \Rightarrow \frac{dx}{dt} = -t^{-2}$
 $y = 2t + t^{-2} \Rightarrow \frac{dy}{dt} = 2 - 2t^{-3}$
 $= \frac{2t^3 - 2}{-t^2}$
 $= -\frac{2t^3 - 2}{t}$

Marker's comment:

Students who found the Cartesian equation to find $\frac{dy}{dx}$ found the process longer than those who were able to do it parametrically i.e. with the chain rule.

3

2

Question 8 (continued)

(b)

(ii) Find the coordinates of any stationary points and determine their nature.

Stationary points occur when
$$\frac{dy}{dx} = 0$$
 i.e. $-\frac{2t^3 - 2}{t} = 0$
 $\therefore 2(t^3 - 1) = 0$
 $\therefore t^3 = 1$
 $\therefore t = 1$
Stationary point is at (0, 3)
 $\frac{dy}{dx} = -\frac{2t^3 - 2}{t}$
 $t = 0.5$: (1, 5) $\frac{dy}{dx} = \frac{7}{2}$
 $t = 1$: (0, 3) $\frac{dy}{dx} = 0$
 $t = 2$: $(-\frac{1}{2}, 4\frac{1}{4})$ $\frac{dy}{dx} = -7$

NB $\frac{dx}{dt} = -t^{-2}$ i.e. the *x*-coordinates are decreasing as *t* increases.

Using the parameter AND the coordinates then:

t	2	1	0
x	-0.5	0	1
$\frac{dy}{dx}$	-7	0	3.5

So (0, 3) is a minimum turning point.

Marker's comment:

- Many students did not make the correct conclusion that when t < 1 that x > 1 and vice versa. Hence many students incorrectly determined the nature of this stationary point. Students who did everything correctly but did not get the correct nature only lost 0.5 marks.
- Students who differentiated $\frac{dy}{dx}$ with respect to t to find the second derivative were not

awarded a whole mark as it was mathematically incorrect.

Question 8 (continued)

(c) Consider the diagram below of the parabola $y = x^2$. Some points (e.g *P*) lie on three distinct normals (*PN*₁, *PN*₂ and *PN*₃) to the parabola.

(i) Show that the equation of the normal to $y = x^2$ at the point (t, t^2) may be 2 written as

$$t^{3} + \left(\frac{1-2y}{2}\right)t + \left(\frac{-x}{2}\right) = 0$$

$$x = t; y = t^{2}$$
$$\frac{dy}{dx} = 2x$$
$$= 2t$$
$$\therefore \text{ the gradient}$$

 \therefore the gradient of the normal is $-\frac{1}{2t}$

$$\therefore y - t^{2} = -\frac{1}{2t}(x - t)$$

$$\therefore 2ty - 2t^{3} = -x + t$$

$$\therefore 2t^{3} + t - 2ty - x = 0$$

$$\therefore 2t^{3} + t(1 - 2y) - x = 0$$

$$\therefore t^{3} + t\left(\frac{1 - 2y}{2}\right) + \left(\frac{-x}{2}\right) = 0$$

Marker's comment:

- Successful students found that the gradient of the normal is $-\frac{1}{2t}$.
- Marks were deducted if students did not show enough working.

Question 8 (continued)

(c) (ii) For polynomials of the form $p(x) = x^3 + cx + d$, it is known that if the polynomial has 3 distinct roots then $27d^2 + 4c^3 < 0$ (Do NOT prove this.)

Suppose that the normal to $y = x^2$ at three distinct points $N_1(t_1, t_1^2)$, $N_2(t_2, t_2^2)$ and $N_3(t_3, t_3^2)$ all pass through $P(x_0, y_0)$.

Show that the coordinates of *P* satisfy $y_0 > 3\left(\frac{x_0}{4}\right)^{\frac{2}{3}} + \frac{1}{2}$

As there are 3 normals to $y = x^2$ that pass through $P(x_0, y_0)$, then the equation from (c) (i) i.e. $t^3 + \left(\frac{1-2y_0}{2}\right)t + \left(\frac{-x_0}{2}\right) = 0$ has 3 distinct solutions

If
$$c = \frac{1-2y_0}{2}$$
 and $d = \frac{-x_0}{2}$ then $27d^2 + 4c^3 < 0$
 $\therefore 27\left(-\frac{x_0}{2}\right)^2 + 4\left(\frac{1-2y_0}{2}\right)^3 < 0 \Rightarrow \frac{27x_0^2}{4} + \frac{(1-2y_0)^3}{2} < 0$
 $\therefore 27x_0^2 + 2(1-2y_0)^3 < 0 \Rightarrow 2(1-2y_0)^3 < -27x_0^2$
 $\therefore (1-2y_0)^3 < \frac{-27x_0^2}{2}$
 $\therefore 1-2y_0 < \left(\frac{-27x_0^2}{2}\right)^{\frac{1}{3}} = -3\left(\frac{x_0^2}{2}\right)^{\frac{1}{3}}$
 $\therefore 1-2y_0 < -3\left(\frac{x_0^2}{2}\right)^{\frac{1}{3}} = -3\left(\frac{x_0^2}{2}\right)^{\frac{1}{3}}$
 $\therefore 2y_0 < 3\left(\frac{x_0^2}{2}\right)^{\frac{1}{3}} + 1$
 $\therefore y_0 < 3\left(\frac{x_0^2}{2\times 2^{\frac{1}{3}}}\right) + \frac{1}{2} = 3\left(\frac{x_0}{4}\right)^{\frac{2}{3}} + \frac{1}{2}$

Marker's comment:

• Students who expanded $\left(\frac{1-2y_0}{2}\right)^3$ struggled to find the required statement.

• Some students were able to substitute successfully (x_0, y_0) and were rewarded appropriately. As well as those students who correctly substituted the values for *c* and *d*.