

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC 2015 Extension 1 Mathematics Assessment Task 1 Term 4, 2014

Name: \qquad Mathematics Class: 11Mx \qquad
Student Number: \qquad
Time Allowed: 55 minutes +2 minutes reading time

Total Marks: 41

Instructions:

- Attempt all questions.
- Start each question in a new booklet.

Put your number on every booklet and any extra writing paper used.

- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Work down the page.
- Do not work in columns.
- Each question will be collected separately. Submit a blank booklet if you do not attempt a question.

Question	1-3	4-5	6 a	6b	7 a	7b	8a	8bc	Total
PE3	13		14			14	3	19	123
PE4				8					18
HE7		12			18				/10
	13	12	14	18	18	14	13	19	141

Section I

5 marks
Attempt Questions 1-5
Use the multiple choice answer sheet for Questions 1-5

1 When $2 x^{3}+x^{2}+k x-4$ is divided by $(x-1)$ the remainder is 2 .
What is the value of k ?
(A) $\quad-7$
(B) -5
(C) 1
(D) 3

2 A function is represented by the parametric equations

$$
\begin{aligned}
& x=2 t+1 \\
& y=t-2
\end{aligned}
$$

Which of the following is the Cartesian equation of the function?
(A) $x-2 y+3=0$
(B) $x-2 y-3=0$
(C) $x+2 y+5=0$
(D) $x-2 y-5=0$

3 The polynomial $P(x)$ is monic and of degree 5 .
It has a single zero at $x=-1$ and a double zero at $x=2$.
The other two zeroes are not real.
Which of the following equations best represents $P(x)$?
(A) $(x-1)(x+2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c>0$
(B) $(x+1)(x-2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c>0$
(C) $(x+1)(x-2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c<0$
(D) $(x-1)(x+2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c<0$

4 Following is the sketch of $y=f^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of the function $f(x)$.

Which of the following graphs is a possible graph of the original function $y=f(x)$?
(A)

(C)

(B)

(D)

5 Which of the following best represents the graph of $y=\frac{1}{\sqrt{4-x^{2}}}$? (A)

(B)

(C)

(D)

Section II

36 marks

Attempt Questions 6-8
Answer each question in a SEPARATE writing booklet. Extra writing paper is available.
In Questions 6-8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Given that α, β and γ are the roots of the equation $x^{3}-4 x^{2}+3 x-1=0$, find the value of:
(i) $\alpha+\beta+\gamma$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(b) The point $S\left(4 s, 2 s^{2}\right)$, lies on the parabola as shown below.

The normal at S intersects the parabola again at the point $T\left(4 t, 2 t^{2}\right)$.
(i) Write down the Cartesian equation of the parabola.
(ii) By finding the equation of the normal, show that $S T$ passes through the 3 point $N\left(0,4+2 s^{2}\right)$.
(iii) By finding the equation of the chord $S T$, show that $t=-\left(s+\frac{2}{s}\right)$.
(iv) With reference to the diagram, explain why $s \neq 0$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the cubic polynomial $f(x)=a x^{3}+b x^{2}+c x+d$ where a, b, c and d are real numbers and $a \neq 0$.

Let α, β and γ be the zeroes of $f(x)$.
(i) Explain why all cubic polynomial functions have a single point of inflexion where the second derivative is zero.
(ii) Using part (i) above, show that the x-coordinate of the point of inflexion on the curve $y=f(x)$ is given by

$$
x=\frac{\alpha+\beta+\gamma}{3}
$$

(iii) The cubic polynomial below has x-intercepts at $-1,3$ and 4 .

If the y-intercept is 24 , find the coordinates of the point of inflexion.

Question 7 (continued)
(b)

The diagram above shows the graph of the parabola $x^{2}=4 a y$.
The normal to the parabola at the variable point $P\left(2 a t, a t^{2}\right), t>0$, cuts the y-axis at Q. Point R lies on the parabola.

You may assume that the equation of the normal to the parabola at P is given by $x+t y=2 a t+a t^{3}$ (Do NOT prove.)
(i) The point R is such that $Q R$ is parallel to the x-axis and $\angle P Q R>90^{\circ}$.

Show that the coordinates of R are $\left(-2 a \sqrt{t^{2}+2}, a t^{2}+2 a\right)$.
(ii) Let M be the midpoint of $R Q$. Find the Cartesian equation of the locus of M.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) The polynomial $P(x)=x^{3}+a x^{2}+b x+20$ has a factor of $x-5$ and leaves a remainder of -10 when divided by $x-3$.

Find the values of a and b.
(b) A curve has parametric equations $x=\frac{1}{t}-1$ and $y=2 t+\frac{1}{t^{2}}$
(i) Find $\frac{d y}{d x}$ in terms of t.
(ii) Find the coordinates of any stationary points and determine their nature.
(c) Consider the diagram below of the parabola $y=x^{2}$.

Some points (e.g P) lie on three distinct normals $\left(P N_{1}, P N_{2}\right.$ and $P N_{3}$) to the parabola.

(i) Show that the equation of the normal to $y=x^{2}$ at the point $\left(t, t^{2}\right)$ may be written as

$$
t^{3}+\left(\frac{1-2 y}{2}\right) t+\left(\frac{-x}{2}\right)=0
$$

(ii) For polynomials of the form $p(x)=x^{3}+c x+d$, it is known that if the polynomial has 3 distinct roots then $27 d^{2}+4 c^{3}<0$ (Do NOT prove this.)

Suppose that the normal to $y=x^{2}$ at three distinct points $N_{1}\left(t_{1}, t_{1}^{2}\right), N_{2}\left(t_{2}, t_{2}^{2}\right)$ and $N_{3}\left(t_{3}, t_{3}^{2}\right)$ all pass through $P\left(x_{0}, y_{0}\right)$.
Show that the coordinates of P satisfy $y_{0}>3\left(\frac{x_{0}}{4}\right)^{\frac{2}{3}}+\frac{1}{2}$
(b) A curve has equation $y=\frac{x^{2}}{(x-1)(x-5)}$.
(i) By considering when the curve intersects with the line $y=k$, show that the stationary points of the curve satisfy $k(4 k+5)=0$.
(ii) Write down the coordinates of the stationary points on the curve.
(ii) Sketch the curve showing intercepts, asymptotes and stationary points.
(a)

Fig. 7 shows the curve $y=\frac{x^{2}}{1+2 x^{3}}$. It is undefined at $x=a$; the line $x=a$ is a vertical asymptote.

(i) Write down the value of a correct to 3 sig fig.
(ii) Show that $\frac{d y}{d x}=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}}$ $2 k x^{3}-x^{2}+k=0$ have 3 distinct roots.
(b) Consider the curve $y=x^{3}-4 x$
(i) Show that the gradient of the tangent to the curve at the point $P\left(p, p^{3}-4 p\right)$ is $3 p^{2}-4$
(ii) The tangent at P cuts the curve again at the point R.

Find the coordinates of R.
(b) Find the value of a, given that

$$
x^{3}-4 x^{2}+a \equiv(x+1) Q(x)+3, \text { where } Q(x) \text { is a polynomial. }
$$

It is given that α, β and γ satisfy the equations

$$
\begin{aligned}
& \alpha+\beta+\gamma=1 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=-5 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-23
\end{aligned}
$$

(a) Show that $\alpha \beta+\beta \gamma+\gamma \alpha=3$.
(3 marks)
(b) Use the identity

$$
(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)=\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma
$$

to find the value of $\alpha \beta \gamma$.
(c) Write down a cubic equation, with integer coefficients, whose roots are α, β and γ.
(d) Explain why this cubic equation has two non-real roots.
(e) Given that α is real, find the values of α, β and γ.

A curve is defined by the parametric equations $x=2 t+\frac{1}{t^{2}}, \quad y=2 t-\frac{1}{t^{2}}$.
(a) At the point P on the curve, $t=\frac{1}{2}$.
(i) Find the coordinates of P.
(ii) Find an equation of the tangent to the curve at P.
(b) Show that the cartesian equation of the curve can be written as

$$
(x-y)(x+y)^{2}=k
$$

where k is an integer.

Find the value of a, given that $x^{3}-4 x^{2}+a \equiv(x+1) Q(x)+3$,

2 A curve is defined by the parametric equations

$$
x=\frac{1}{t}, \quad y=t+\frac{1}{2 t}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find an equation of the normal to the curve at the point where $t=1$.
(c) Show that the cartesian equation of the curve can be written in the form

$$
x^{2}-2 x y+k=0
$$

where k is an integer.

Spare Questions

6 Suppose $P(x)=2 x^{3}+5 x^{2}+2 x+9, Q(x)=x^{3}+5 x^{2}+5 x+7$ and $P(x)-Q(x)=(x-1)^{2}(x+2)$.

What is the geometric interpretation of this?
(A) $\quad P(x)$ and $Q(x)$ are tangent at $x=1$ and intersect at $x=-2$.
(B) $\quad P(x)$ and $Q(x)$ are intersect at $x=1$ and tangent at $x=-2$.
(C) $\quad P(x)$ and $Q(x)$ are intersect at both $x=1$ and $x=-2$.
(D) $\quad P(x)$ and $Q(x)$ are tangent at both $x=1$ and $x=-2$.

4 The equation $x^{3}-2 x^{2}-x+1=0$ has roots α, β and γ.
Which of the following is true?
(A) $\alpha+\beta+\gamma=-2$ and $\alpha \beta \gamma=-1$
(B) $\alpha+\beta+\gamma=-2$ and $\alpha \beta \gamma=1$
(C) $\alpha+\beta+\gamma=2$ and $\alpha \beta \gamma=-1$
(D) $\alpha+\beta+\gamma=2$ and $\alpha \beta \gamma=1$

7 Which diagram best represents $P(x)=(x-a)^{2}\left(b^{2}-x^{2}\right)$, where $a>b$?
(A)

(B)

(C)

(D)

$8 \quad$ If $x+\alpha$ is a factor of $7 x^{3}+9 x^{2}-5 \alpha x$, where $a \neq 0$, what is the value of α ?
(A) 2
(B) $\frac{4}{7}$
(C) $-\frac{4}{7}$
(D) -2

9 A polynomial of degree four is divided by a polynomial of degree two.
What is the maximum possible degree of the remainder?
(A) 3
(B) 2
(C) 1
(D) 0

$$
P(x)=\left(x^{2}+x+1\right) \times Q(x)+(2 x+3)
$$

for some polynomial $Q(x)$.
From this information alone, which of the following can be deduced?
(A) $\quad Q(-2)=-\frac{1}{3}$
(B) $\quad Q(-2)=\frac{1}{3}$
(C) $\quad Q(2)=-1$
(D) $\quad Q(2)=1$

3 What is the x-intercept of the normal to the parabola $x^{2}=4 a y$ at the point $\left(2 a p, a p^{2}\right)$?
(A) $a p\left(p^{2}+1\right)$
(B) $a p\left(p^{2}+2\right)$
(C) $a p^{2}$
(D) $-a p^{2}$

Given that $x(2 x-1)(x+1)+3 \equiv 2 x^{3}+b x^{2}+c x+3$, find the values of b and c.

The cubic equation

$$
x^{3}+p x^{2}+q x+r=0
$$

where p, q and r are real, has roots α, β and γ.
(a) Given that

$$
\alpha+\beta+\gamma=4 \quad \text { and } \quad \alpha^{2}+\beta^{2}+\gamma^{2}=20
$$

find the values of p and q.
(b) Given further that one root is $3+\mathrm{i}$, find the value of r.

The diagram shows a variable point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$.
The normal to the parabola at P intersects the y-axis at Q. The point Q is the midpoint of $P R$.

The equation of the normal is $x+p y-2 a p-a p^{3}=0$. (Do NOT prove this.)
(i) Find the coordinates of the point Q.
(ii) The locus of the point R is a parabola.

Find the equation of this parabola in Cartesian form and state its vertex.
(a) When a polynomial $P(x)$ is divided by $(x-1)$, the remainder is 3 . When $P(x)$ is divided by $(x+2)$, the remainder is -2 . Find the remainder when the polynomial is divided by $x^{2}+x-2$.
(b) The tangent to the curve $y=x^{3}-4 x^{2}-x+2$, at a point Q on the curve, intersects the curve again at $A(2,-8)$. Find the co-ordinates of the point Q.
(i) Show that 1 is a zero of $P(x)$.
(ii) Express $P(x)$ as a product of three factors.
(iii) Sketch the graph of $y=P(x)$. Show clearly all the intercepts with axes. Do not calculate the coordinates of the turning points.
(iv) Solve the inequality $P(x) \leq 0$.
(b) The displacement of a particle moving in simple harmonic motion is given by

$$
x=a \cos n t,
$$

QUESTION THREE (14 marks) Use a separate writing booklet.
Marks
(a) Let the roots of the equation $x^{3}+2 x^{2}-3 x+5=0$ be α, β and γ.
(i) State the values of:

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC 2015 Extension 1 Mathematics Assessment Task 1
Term 4, 2014

Sample Solutions

Section I

5 marks
Attempt Questions 1-5
Use the multiple choice answer sheet for Questions 1-5

1 When $2 x^{3}+x^{2}+k x-4$ is divided by $(x-1)$ the remainder is 2 .
What is the value of k ?
(A) $\quad-7$
(B) -5
(C) 1
(D) 3

Let $P(x)=2 x^{3}+x^{2}+k x-4$
$\therefore P(1)=2$
$\therefore 2+1+k-4=2 \Rightarrow k=3$
2 A function is represented by the parametric equations

$$
\begin{aligned}
& x=2 t+1 \\
& y=t-2
\end{aligned}
$$

Which of the following is the Cartesian equation of the function?
(A) $x-2 y+3=0$
(B) $x-2 y-3=0$
(C) $x+2 y+5=0$
(D) $x-2 y-5=0$

$$
\begin{aligned}
& t=y+2 \\
& \therefore x=2(y+2)+1 \\
& \therefore x=2 y+5 \\
& \therefore x-2 y-5=0
\end{aligned}
$$

3 The polynomial $P(x)$ is monic and of degree 5.
It has a single zero at $x=-1$ and a double zero at $x=2$.
The other two zeroes are not real.
Which of the following equations best represents $P(x)$?
(A) $(x-1)(x+2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c>0$
(B) $(x+1)(x-2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c>0$
C) $(x+1)(x-2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c<0$
(D) $(x-1)(x+2)^{2}\left(x^{2}+b x+c\right)$, where $b^{2}-4 c<0$

A single root at $x=-1$ and a double zero at $x=2$ means $(x+1)(x-2)^{2}$
The other two zeroes are not real means that for $x^{2}+b x+c$) then $b^{2}-4 c<0$.

4 Following is the sketch of $y=f^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of the function $f(x)$.

Which of the following graphs is a possible graph of the original function $y=f(x)$?

Stationary points are at $x=2,4$ and 6 .
Looking at the sign of $f^{\prime}(x)$ either side of $x=2,4$ and 6 means that there is maxima at $x=2,6$ and a minimum at $x=4$.

5 Which of the following best represents the graph of $y=\frac{1}{\sqrt{4-x^{2}}}$?
(A)

(B)

(C)

(D)

Considering range:

Considering domain:
$y>0$
$4-x^{2}>0 \Rightarrow-2<x<2$

Section II

Question 6 (12 marks)
(a) Given that α, β and γ are the roots of the equation $x^{3}-4 x^{2}+3 x-1=0$, find the value of:
(i) $\alpha+\beta+\gamma$

$$
\alpha+\beta+\gamma=-(-4)=4
$$

(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\sum \alpha \beta}{\alpha \beta \gamma} \\
& =\frac{3}{-(-1)} \\
& =3
\end{aligned}
$$

(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =\left(\sum \alpha\right)^{2}-2\left(\sum \alpha \beta\right) \\
& =(-4)^{2}-2 \times 3 \\
& =10
\end{aligned}
$$

Markers Comments

Generally well done, though the common errors were associated with incorrectly remembering $\alpha^{2}+\beta^{2}+\gamma^{2}=\left(\sum \alpha\right)^{2}-2\left(\sum \alpha \beta\right)$

Question 6 (continued)
(b) The point $S\left(4 s, 2 s^{2}\right)$, lies on the parabola as shown below.

The normal at S intersects the parabola again at the point $T\left(4 t, 2 t^{2}\right)$.
(i) Write down the Cartesian equation of the parabola.

$$
\begin{aligned}
& x=4 s, y=\underset{a}{2} s^{2} \Rightarrow x^{2}=4 \times 2 y \\
& \therefore x^{2}=8 y
\end{aligned}
$$

Markers Comments

Generally well done
(ii) By finding the equation of the normal, show that $S T$ passes through the point $N\left(0,4+2 s^{2}\right)$.
$x=4 s \Rightarrow \frac{d x}{d s}=4$
$y=2 s^{2} \Rightarrow \frac{d y}{d s}=4 s$
$\frac{d y}{d x}=\frac{\frac{d y}{d s}}{\frac{d x}{d s}}$
$=\frac{4 \mathrm{~s}}{4}$
$=s$
\therefore the gradient of the normal is $-\frac{1}{s}$
\therefore the normal is $y-2 s^{2}=-\frac{1}{s}(x-4 s)$
$\therefore x+s y=4 s+2 s^{3}$
Considering the y-intercept i.e. $x=0$ then $s y=4 s+2 s^{3}$
\therefore the normal passes through $N\left(0,4+2 s^{2}\right)$

Markers Comments

Generally well done

Question 6 (continued)
(iii) By finding the equation of the chord $S T$, show that $t=-\left(s+\frac{2}{s}\right)$.

$$
\begin{aligned}
m_{S T} & =\frac{2 t^{2}-2 s^{2}}{4 t-4 s} \\
& =\frac{2(t-s)(t+s)}{4(t-s)} \\
& =\frac{t+s}{2}
\end{aligned}
$$

\therefore chord $S T$ is $y-2 t^{2}=\left(\frac{s+t}{2}\right)(x-4 t)$
\therefore the gradient of $N T$ is also $\frac{s+t}{2}$

$$
\begin{aligned}
m_{N T} & =\frac{4+2 s^{2}-2 t^{2}}{0-4 t} \\
& =-\frac{2+s^{2}-t^{2}}{2 t}
\end{aligned}
$$

$$
\therefore \frac{t+s}{2}=-\frac{2+s^{2}-t^{2}}{2 t}
$$

$$
\therefore t(t+s)=-\left(2+s^{2}-t^{2}\right)
$$

$$
\therefore t s=-2-s^{2}
$$

$$
\therefore t=\frac{-2-s^{2}}{s}=-\left(s+\frac{2}{s}\right)
$$

Markers Comments

- Generally well done
- Some students could not complete the question as they did not realise that $m_{N T}=m_{S T}$
- Most students substituted $N\left(0,4+2 s^{2}\right)$ into chord ST.
- Some students used $m_{N T}=-\frac{1}{s}$
(iv) With reference to the diagram, explain why $s \neq 0$.

At the origin the normal does not re-intersect the parabola and so $s \neq 0$

Markers Comments

- Some students explained the answer algebraically without reference to the diagram.
- Some students did not understand what the question meant for them to do.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the cubic polynomial $f(x)=a x^{3}+b x^{2}+c x+d$ where a, b, c and d are real numbers and $a \neq 0$.

Let α, β and γ be the zeroes of $f(x)$.
(i) Explain why all cubic polynomial functions have a single point of inflexion where the second derivative is zero.

$$
\begin{aligned}
\quad f(x) & =a x^{3}+b x^{2}+c x+d \\
\therefore f^{\prime}(x) & =3 a x^{2}+2 b x+c \\
\therefore f^{\prime \prime}(x) & =6 a x+2 b \\
& =2(3 a x+b)
\end{aligned}
$$

So there is only one POSSIBLE point of inflexion (POI).
Why is it a POI?
Consider the graph of $y=2(3 a x+b)$:
The straight line cuts the x-axis at $x=-\frac{b}{3 a}$ and so either side of this point the graph changes sign i.e. $f(x)$ changes in concavity.
\therefore there is only one POI at $x=-\frac{b}{3 a}$.

Markers Comments

Most students did not consider that the $2^{\text {nd }}$ derivative must change sign at $x=-\frac{b}{3 a}$.
(ii) Using part (i) above, show that the x-coordinate of the point of inflexion on the curve $y=f(x)$ is given by

$$
x=\frac{\alpha+\beta+\gamma}{3}
$$

From (ii) above the point of inflexion is at $x=-\frac{b}{3 a}$.

$$
\alpha+\beta+\gamma=-\frac{b}{a}
$$

$\therefore \frac{\alpha+\beta+\gamma}{3}=-\frac{b}{3 a}$
\therefore the POI is at $x=\frac{\alpha+\beta+\gamma}{3}$.

Markers Comments

The most common error was to let $a=1$.

Question 7 (continued)
(a) (iii) The cubic polynomial below has x-intercepts at $-1,3$ and 4 . If the y-intercept is 24 , find the coordinates of the point of inflexion.

The equation of the polynomial is $y=k(x+1)(x-3)(x-4)$
With the y-intercept of 24 then $y=2(x+1)(x-3)(x-4)$

From (iii), the x-coordinate of the POI is $x=\frac{-1+3+4}{3}=2$
So the y-coordinate is given by $y=2(2+1)(2-3)(2-4)=12$
\therefore the POI is at $(2,12)$.

Markers Comments

Students who used $y=a x^{3}+b x^{2}+c x+d$ in stead of $y=a(x+1)(x-3)(x-4)$ struggled to complete this question accurately.
(b)

The diagram above shows the graph of the parabola $x^{2}=4 a y$.
The normal to the parabola at the variable point $P\left(2 a t, a t^{2}\right), t>0$, cuts the y-axis at Q. Point R lies on the parabola.

You may assume that the equation of the normal to the parabola at P is given by $x+t y=2 a t+a t^{3}$ (Do NOT prove.)
(i) The point R is such that $Q R$ is parallel to the x-axis and $\angle P Q R>90^{\circ}$.

Show that the coordinates of R are $\left(-2 a \sqrt{t^{2}+2}, a t^{2}+2 a\right)$.
The y-coordinate of R is the same as that of Q :
With $x+t y=2 a t+a t^{3}$, let $x=0: \quad t y=2 a t+a t^{3}$
$\therefore y=2 a+a t^{2}$
As R lies on the parabola then $x^{2}=4 y$
$\therefore x^{2}=4\left(2 a+a t^{2}\right)$
$\therefore x= \pm 2 \sqrt{2+t^{2}}$
R is in the $2^{\text {nd }}$ quadrant and so $x=-2 \sqrt{2+t^{2}}$
Markers Comments

- This question was completed with a high level of accuracy.
- Students were penalised if they did not explain why the x-coordinate of R is negative

Question 7 (continued)
(b) (ii) Let M be the midpoint of $R Q$. Find the Cartesian equation of the locus of M.
(Do NOT consider any possible domain restrictions of the locus)
M is the midpoint of $\left(-2 a \sqrt{t^{2}+2}, a t^{2}+2 a\right)$ and $\left(0, a t^{2}+2 a\right)$
$\therefore M\left(-a \sqrt{t^{2}+2}, a t^{2}+2 a\right)$
Let $x=-a \sqrt{t^{2}+2}$ and $y=a t^{2}+2 a$
$\therefore t^{2}=\frac{y-2 a}{a}$

$$
\begin{aligned}
x^{2} & =a^{2}\left(t^{2}+2\right) \\
& =a^{2}\left(\frac{y-2 a}{a}+2\right) \\
& =a(y-2 a+2 a) \\
& =a y
\end{aligned}
$$

The locus of M is $x^{2}=a y$.
This is a parabola with the a quarter the focal length as $x^{2}=4 a y$ but vertex at $(0,0)$.

Markers Comments

The question was generally well completed, though many students attempted to eliminate " a " instead of " t ".

Question 8

(a) The polynomial $P(x)=x^{3}+a x^{2}+b x+20$ has a factor of $x-5$ and leaves a remainder of -10 when divided by $x-3$.

Find the values of a and b.
$P(5)=0$:

$$
\begin{align*}
& 125+25 a+5 b+20=0 \\
& \therefore 25 a+5 b=-145 \\
& \therefore 5 a+b=-29 \tag{1}
\end{align*}
$$

$$
P(3)=-10 \quad 27+9 a+3 b+20=-10
$$

$$
\therefore 9 a+3 b=-57
$$

$$
\begin{equation*}
\therefore 3 a+b=-19 \tag{2}
\end{equation*}
$$

(1) - (2): $\quad 2 a=-10$
$\therefore a=-5$
Substitute into (2): $\quad-15+b=-19$
$\therefore b=-4$
$\therefore a=-5, b=-4$
Marker's comment:

- Most students recognised that $P(5)=0$ and $P(2)=-10$ and then generally were successful in finding a and b.
- There are students who cannot solve simultaneous equations without error.
(b) A curve has parametric equations $x=\frac{1}{t}-1$ and $y=2 t+\frac{1}{t^{2}}$
(i) Find $\frac{d y}{d x}$ in terms of t.

$$
\begin{array}{rlrl}
x=t^{-1}-1 \Rightarrow \frac{d x}{d t}=-t^{-2} & \frac{d y}{d x} & =\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\
y=2 t+t^{-2} \Rightarrow \frac{d y}{d t}=2-2 t^{-3} & & =\frac{2-2 t^{-3}}{-t^{-2}} \\
& =\frac{2 t^{3}-2}{-t} \\
& =-\frac{2 t^{3}-2}{t}
\end{array}
$$

Marker's comment

Students who found the Cartesian equation to find $\frac{d y}{d x}$ found the process longer than those who were able to do it parametrically i.e. with the chain rule.

Question 8 (continued)
(b) (ii) Find the coordinates of any stationary points and determine their nature.

Stationary points occur when $\frac{d y}{d x}=0$ i.e. $-\frac{2 t^{3}-2}{t}=0$
$\therefore 2\left(t^{3}-1\right)=0$
$\therefore t^{3}=1$
$\therefore t=1$
Stationary point is at $(0,3)$
$\frac{d y}{d x}=-\frac{2 t^{3}-2}{t}$
$t=0.5: \quad(1,5) \quad \frac{d y}{d x}=\frac{7}{2}$
$t=1: \quad(0,3) \quad \frac{d y}{d x}=0$
$t=2: \quad\left(-\frac{1}{2}, 4 \frac{1}{4}\right) \quad \frac{d y}{d x}=-7$
$\mathbf{N B} \frac{d x}{d t}=-t^{-2}$ i.e. the x-coordinates are decreasing as t increases.
Using the parameter AND the coordinates then:

t	2	1	0
x	-0.5	0	1
$\frac{d y}{d x}$	-7	0	3.5

So $(0,3)$ is a minimum turning point.

Marker's comment

- Many students did not make the correct conclusion that when $t<1$ that $x>1$ and vice versa. Hence many students incorrectly determined the nature of this stationary point.
Students who did everything correctly but did not get the correct nature only lost 0.5 marks.
- Students who differentiated $\frac{d y}{d x}$ with respect to t to find the second derivative were not awarded a whole mark as it was mathematically incorrect.

Question 8 (continued)
(c) Consider the diagram below of the parabola $y=x^{2}$.

Some points (e.g P) lie on three distinct normals $\left(P N_{1}, P N_{2}\right.$ and $\left.P N_{3}\right)$ to the parabola.

(i) Show that the equation of the normal to $y=x^{2}$ at the point $\left(t, t^{2}\right)$ may be written as

$$
t^{3}+\left(\frac{1-2 y}{2}\right) t+\left(\frac{-x}{2}\right)=0
$$

$$
\begin{aligned}
x= & t ; y=t^{2} \\
\frac{d y}{d x} & =2 x \\
& =2 t
\end{aligned}
$$

\therefore the gradient of the normal is $-\frac{1}{2 t}$
$\therefore y-t^{2}=-\frac{1}{2 t}(x-t)$
$\therefore 2 t y-2 t^{3}=-x+t$
$\therefore 2 t^{3}+t-2 t y-x=0$
$\therefore 2 t^{3}+t(1-2 y)-x=0$
$\therefore t^{3}+t\left(\frac{1-2 y}{2}\right)+\left(\frac{-x}{2}\right)=0$

Marker's comment

- Successful students found that the gradient of the normal is $-\frac{1}{2 t}$.
- Marks were deducted if students did not show enough working.

Question 8 (continued)
(c) (ii) For polynomials of the form $p(x)=x^{3}+c x+d$, it is known that if the polynomial has 3 distinct roots then $27 d^{2}+4 c^{3}<0$ (Do NOT prove this.)

Suppose that the normal to $y=x^{2}$ at three distinct points $N_{1}\left(t_{1}, t_{1}^{2}\right), N_{2}\left(t_{2}, t_{2}^{2}\right)$ and $N_{3}\left(t_{3}, t_{3}^{2}\right)$ all pass through $P\left(x_{0}, y_{0}\right)$.
Show that the coordinates of P satisfy $y_{0}>3\left(\frac{x_{0}}{4}\right)^{\frac{2}{3}}+\frac{1}{2}$
As there are 3 normals to $y=x^{2}$ that pass through $P\left(x_{0}, y_{0}\right)$, then the equation from (c) (i) i.e. $t^{3}+\left(\frac{1-2 y_{0}}{2}\right) t+\left(\frac{-x_{0}}{2}\right)=0$ has 3 distinct solutions

If $c=\frac{1-2 y_{0}}{2}$ and $d=\frac{-x_{0}}{2}$ then $27 d^{2}+4 c^{3}<0$
$\therefore 27\left(-\frac{x_{0}}{2}\right)^{2}+4\left(\frac{1-2 y_{0}}{2}\right)^{3}<0 \Rightarrow \frac{27 x_{0}{ }^{2}}{4}+\frac{\left(1-2 y_{0}\right)^{3}}{2}<0$
$\therefore 27 x_{0}^{2}+2\left(1-2 y_{0}\right)^{3}<0 \Rightarrow 2\left(1-2 y_{0}\right)^{3}<-27 x_{0}^{2}$
$\therefore\left(1-2 y_{0}\right)^{3}<\frac{-27 x_{0}{ }^{2}}{2}$
$\therefore 1-2 y_{0}<\left(\frac{-27 x_{0}^{2}}{2}\right)^{\frac{1}{3}}=-3\left(\frac{x_{0}^{2}}{2}\right)^{\frac{1}{3}}$
$\therefore 1-2 y_{0}<-3\left(\frac{x_{0}{ }^{2}}{2}\right)^{\frac{1}{3}}=-3\left(\frac{x_{0}^{\frac{2}{3}}}{2^{\frac{1}{3}}}\right)$
$\therefore 2 y_{0}<3\left(\frac{x_{0}^{\frac{2}{3}}}{2^{\frac{1}{3}}}\right)+1$
$\therefore y_{0}<3\left(\frac{x_{0}^{\frac{2}{3}}}{2 \times 2^{\frac{1}{3}}}\right)+\frac{1}{2}=3\left(\frac{x_{0}}{4}\right)^{\frac{2}{3}}+\frac{1}{2}$

Marker's comment

- Students who expanded $\left(\frac{1-2 y_{0}}{2}\right)^{3}$ struggled to find the required statement.
- Some students were able to substitute successfully $\left(x_{0}, y_{0}\right)$ and were rewarded appropriately. As well as those students who correctly substituted the values for c and d.

