

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

> December 2010 Assessment Task 1 Year 11

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question if full marks are to be awarded.
- All answers to be given in simplified exact form unless otherwise stated.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 74

- Attempt questions 1-4
- All questions are **NOT** of equal value.
- Start each new question in a separate answer booklet.
- Hand in your answers in 4 separate bundles:

Question 1, Question 2, Question 3 and Question 4

Examiner: R Boros

Question 1 (18 marks).

a) Express $\frac{7\pi^{c}}{18}$ in degrees.

b) Find the value of k if
$$(x-2)$$
 is a factor of $P(x) = x^4 - 3x^3 + kx^2 - 4$

c) Solve for
$$x, \frac{x+1}{x-3} \ge 2$$

- **d**) Find the acute angle, to the nearest degree, between the lines y = 2x + 3 and x + y = 0
- e) Find the general solution of $2\cos\theta 1 = 0$, where θ is in radians. 3

f) Prove that
$$\tan\left(\frac{\pi}{4} + A\right) + \tan\left(\frac{\pi}{4} - A\right) = 2 \sec 2A$$
.

h) Find the co-ordinates of the point *P* which divides the interval joining A(-1,-3) and B(3,7) externally in the ratio 5:3.

End of Question 1

Marks

1

Start a new booklet.

Question 2 (18 Marks).	Marks
a) The roots of a cubic polynomial equation are 0, 1 and 3; and the coefficient of x^3 is 2. Find the polynomial in full expanded form.	3
b) Solve for $n: 2 \times^n C_4 = 5 \times^n C_2$.	2
c) If α, β and γ are the roots of $x^3 - 3x + 1 = 0$, find;	
(i) $\alpha + \beta + \gamma$	1
(ii) $\alpha\beta\gamma$	1
(iii) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$	2
d) (i) Express $\sqrt{3}\cos x - \sin x$ in the form	2
$R\cos(x+\alpha), R>0 \text{ and } 0 \le \alpha \le \frac{\pi}{2}$.	
(ii) Hence, find the general solution for $\sqrt{3}\cos x - \sin x = 1$.	2
e) α and β are acute angles, such that $\cos \alpha = \frac{3}{5}$ and $\sin \beta = \frac{1}{\sqrt{5}}$. Without	2
finding the size of either angle, show that $\alpha = 2\beta$.	
f) Using the identity $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$, solve the equation $\sin 3\theta = 2\sin \theta$, where $0 \le \theta \le 2\pi$.	3

End of Question 2

Question 3 (18 marks).

a)

Start a new booklet.

(i) Show that the equation $\sin x^\circ - 3\cos x^\circ = \tan\left(\frac{x}{2}\right)^\circ$ may be written as

 $t^{3} - 3t^{2} - t + 3 = 0$, where $t = \tan\left(\frac{x}{2}\right)^{\circ}$

b) Six identical yellow discs and 4 identical blue discs are placed in a straight line. 1How many arrangements are possible?

(ii) Hence, find all 3 solutions of the equation $\sin x^{\circ} - 3\cos x^{\circ} = \tan\left(\frac{x}{2}\right)^{\circ}$, for

 $0^{\circ} \le x \le 360^{\circ}$. Give answers to the nearest minute, if necessary.

- c) (i) In how many ways can a committee of 2 Australians, 2 New Zealanders 2 and 1 Nauruan be chosen from 6 Australians, 7 New Zealanders and 3 Nauruans?
 - (ii) In how many of these ways do 2 friends, a particular Australian and a 1 particular New Zealander, belong to the committee?
- d) For the parabola x² = 12y:
 (i) Derive the equation of the tangent at (6t, 3t²).
 (ii) Find the equations of the two tangents that pass through the point(5, -2).
- e) Find the value of the constants p and q if $x^2 4x + 3$ is a factor of $x^3 + px^2 - x + q$.

End of Question 3

Marks

3

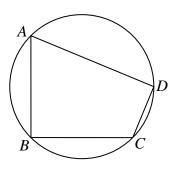
2

3

Start a new booklet.

Question 4 (20 marks).	Marks
a) In how many ways can 8 different books be arranged in a row such that 3	2
particular books are always together?	

b) *ABCD* is a cyclic quadrilateral. One of its properties is that opposite angles are supplementary. Show that $\tan A + \tan B + \tan C + \tan D = 0$



2

2

2

2

- c) Eight people including James and Sarah are to be seated around a table. How many arrangements are possible if James and Sarah do not wish to sit next to each other.
- **d**) The straight line y = mx + b meets the parabola $x^2 = 4ay$ at the points

$$P(2ap,ap^2)$$
 and $Q(2aq,aq^2)$

(i) Find the equation of the chord PQ and, hence or otherwise, show that 2

$$pq = -\frac{b}{a}$$

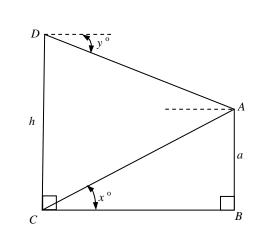
(ii) Prove that
$$p^2 + q^2 = 4m^2 + \frac{2b}{a}$$
 2

(iii)Given that the equation of the normal to the parabola at *P* is $x + py = 2ap + ap^3$, and that, *N*, the point of intersection of the normals at *P* and *Q* has the co-ordinates $\left[-apq(p+q), a(2+p^2+pq+q^2)\right]$, express these co-ordinates in terms of *a*, *m* and *b*.

(iv)Suppose that the chord PQ is free to move while maintaining a fixed gradient. Find the locus of N, and show that this locus is a straight line.Verify that this line is a normal to the parabola.

Question 4 continues on next page

Question 4 (continued).



From the foot of a tower *CD*, the angle of elevation of a building *AB*, '*a*' metres high, is x° . From the top of the tower, *D*, the angle of depression to the top of the building, *A* is y° . Show that the height, '*h*', of the tower is given by:

$$h = \frac{a\sin(x+y)}{\sin x \cos y}$$

End of Question 4

End of Examination

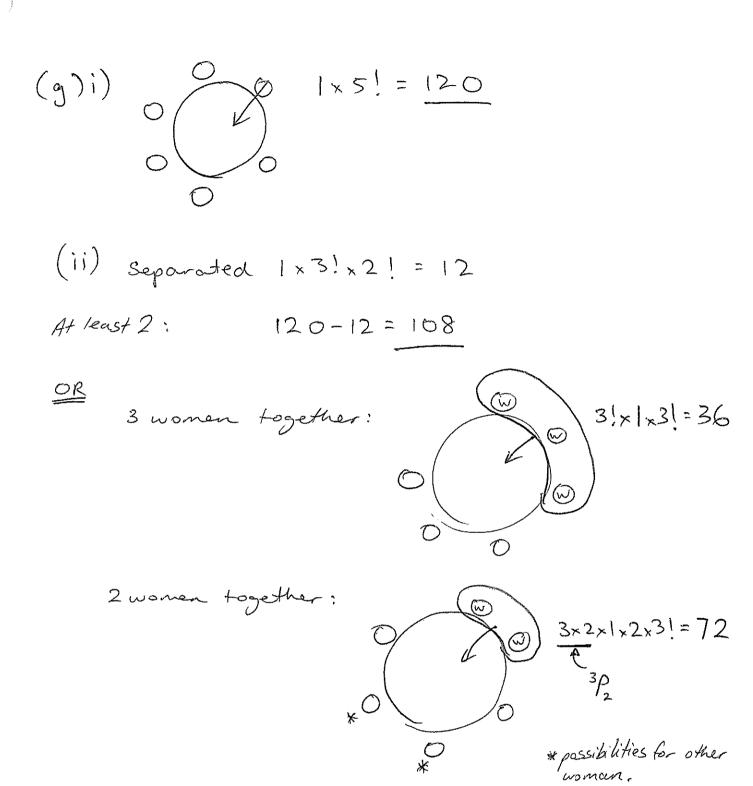
1)a)
$$\frac{7\pi}{18} \times \frac{180}{\pi} = \frac{70^{\circ}}{18}$$

(b) $P(x) = \chi^4 - 3x^3 - kx^2 - 4$
 $P(2) = (2)^4 - 3(2)^3 - k(2)^2 - 4 = 0$
 $\frac{4k - 12}{12} = 0$
 $\frac{k = 3}{12}$

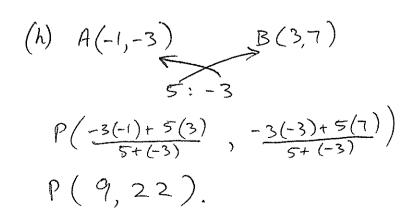
$$\begin{pmatrix} c \\ -\frac{\chi+1}{\chi-3} & = 2 \\ (\chi+1)(\chi-3) & = 2(\chi-3)^{2} \\ (\chi+1)(\chi-3) & = 2(\chi-3)^{2} & = 0 \\ (\chi-3)[\chi+1 & = 2(\chi-3)] & = 0 \\ (\chi-3)[-\chi+7] & = 7 \\ (\chi-3$$

O = 72° (to rearest degree)

(e) 2 cos 0 - 1 = 0 SAT $\cos \theta = \frac{1}{2}$ $\cos d = \frac{1}{2}$ $\alpha = \frac{\pi}{3}$ $Q = 2\pi n \pm \frac{\pi}{3}$ where n is an integer. (f) $LHS = tan(\frac{\pi}{4} + A) + tan(\frac{\pi}{4} - A)$ = tan II + tan A + tan II - tan II + tan A 1 - tan II + tan A 1+ tan II + tan A tan II = 1 let tan A=t A t 2A2t $\frac{1+t}{1-t} + \frac{1-t}{1+t}$ $= \frac{(1+t)^{2} + (1-t)^{2}}{(1-t)^{2}}$ $1+2t+t^{2}+1-2t+t^{2}$ = $= \frac{2(1+t^2)}{1-t^2}$ 2 sec 2A = RHS.



At least 2: 36+72=108



EXTENSION I SOLN'S

QUESTION 2.

a)
$$P(x) = 2x(x-1)(x-3)$$

= $(2x^2 - 2x)(x-3)$
= $2x^3 - 8x^2 + 6x$

5

$$x + p + y = 0 + 1 + 3$$

= 4
$$4 = -\frac{b}{a}$$

Buta = 2
$$\therefore \overline{b} = -8$$

$$z\beta + \beta \chi + d\chi = 0 + 0 + 3$$

$$= 3$$

$$\therefore 3 = \frac{C}{2}$$

$$\boxed{C = 6}$$

$$\forall \beta \chi = 0 \times 1 \times 3$$

$$= 0$$

$$\therefore 0 = -\frac{d}{a}$$

$$\therefore d = 0$$

Given a = 2 $e^{3} P(x) = 2\pi^{3} - 8x^{2} + 6\pi$

b)
$$2 \times {}^{n}C_{4} = 5 \times {}^{n}C_{2}$$
.
 $2 \times \frac{n!}{4!(n-4)!} = 5 \times \frac{n!}{2!(n-2)!}$
 $2 \cdot 2!(n-2)! = 5 \cdot 4!(n-4)!$

$$\frac{(n-2)!}{(n-4)!} = \frac{5.4!}{2.2!}$$

$$(n-3)(n-2) = \frac{5 \times 4 \times 3 \times 2}{2 \times 2}$$

ž

)

$$n^{2} - 5n + 6 = 30$$

$$n^{2} - 5n - 24 = 0$$

$$(n - 8)(n + 3) = 0$$

$$n = 8, -3 \quad n > 0$$

$$-\frac{(n - 8)}{(n - 8)} = 8$$

c) (1)
$$\alpha + \beta + \beta = -\frac{b}{q}$$

= 0
(i) $\alpha \beta \gamma = -\frac{d}{a}$
= -1
(ii) $\alpha \beta + \beta \gamma + \alpha \beta = -3$
 $\alpha \beta \gamma = -1$
= 3.

d)(1)
$$\sqrt{3}\cos z - \sin x = R\cos(x+\alpha)$$

 $R = \sqrt{3} + 1$
 $= 2$
 $\tan \alpha = \frac{1}{\sqrt{3}}$
 $\alpha = \frac{11}{6}$
 $\therefore R\cos(x+\alpha) = 2\cos(x+\frac{11}{6})$

d) (ii)
$$2\cos\left(x+\frac{\pi}{6}\right)=1$$

 $\cos\left(x+\frac{\pi}{6}\right)=\frac{1}{2}$
 $x+\frac{\pi}{6}=2n\pi\pm\frac{\pi}{3}$
 $x=2n\pi\pm\frac{\pi}{3}-\frac{\pi}{6}$
 $OR = 2\pi\pi\pm\pm\frac{\pi}{6}, 2n\pi\pm\frac{\pi}{2}$

e)

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{4}{4} \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{1}{\sqrt{5}}$$

$$\cos \alpha = \frac{3}{5} \sin \beta = \frac{1}{\sqrt{5}}$$

$$\sin 2\beta = 2\sin \beta \cos \beta$$

$$= 2\times \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{5}}$$

$$= \frac{4}{5}$$

$$\sin \alpha = \frac{1}{5}$$

.

Marking Scale Comments

b) I mark for
$$2^{n!} = 5 \times n!$$

 $4!(n-4)! = 5 \times n!$
 $1! \text{ marks if they almost got the answer of n=8}$
because only made as small error

d) (i)
$$x = 30^{\circ}$$
 instead of $x = \frac{\pi}{5} - lost \frac{1}{5} mark$.
 $x = -\frac{\pi}{5} - \frac{1}{5} mark$.

Vi)
$$2marks - 2n\pi \pm \pi - \pi$$

- $2n\pi + \pi$, $2n\pi - \pi$
| mark

$$\frac{1}{2} \max - (x + \frac{\pi}{6}) = 2\pi\pi \pm \frac{\pi}{3}$$

$$\frac{1}{2} \max - 2\pi\pi \pm x$$

2010 Extension Mathematics Task 1: Solutions— Question 3

3. (a) (i) Show that the equation $\sin x^{\circ} - 3\cos x^{\circ} = \tan\left(\frac{x}{2}\right)^{\circ}$ may be written as $t^{3} - 3t^{2} - t + 3 = 0$, where $t = \tan\left(\frac{x}{2}\right)^{\circ}$.

Solution: $\frac{2t}{1+t^2} - \frac{3(1-t^2)}{1+t^2} = t,$ $2t - 3 + 3t^2 = t + t^3,$ $i.e. \ t^3 - 3t^2 - t + 3 = 0.$

(ii) Hence find all three solutions of the equation $\sin x^{\circ} - 3\cos x^{\circ} = \tan\left(\frac{x}{2}\right)^{\circ}$, for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$. Give answers to the nearest minute if necessary.

Solution: Method 1 $t^{2}(t-3) - (t-3) = 0,$ $(t^{2}-1)(t-3) = 0,$ (t+1)(t-1)(t-3) = 0,so $t = 3, \pm 1.$ $\frac{x^{\circ}}{2} \approx 71^{\circ}34', 45^{\circ}, 135^{\circ},$ $x^{\circ} \approx 143^{\circ}8', 90^{\circ}, 270^{\circ}.$

Solution: Method 2 Put $P(t) = t^3 - 3t^2 - t + 3 = 0$, $P(3) = 27 - 3 \times 9 - 3 + 3 = 0$. $\therefore (t-3)$ is a factor. 1 -3 - 1 - 3 3 - 1 - 3 - 3 3 - 1 - 3 - 1 - 3 3 - 1 - 3 - 1 - 3 3 - 1 - 3 - 1 - 31 - 3 - 1 - 3

(b) Six identical yellow discs and four identical blue discs are placed in a straight line. How many arrangements are possible?

Solution: $\frac{10!}{6!4!} = 210.$

3

 $\left[1\right]$

(c) (i) In how many ways can a committee of 2 Australians, 2 New Zealanders, and one Nauruan be chosen from 6 Australians, 7 New Zealanders, and 3 Nauruans?

Solution:
$$\binom{6}{2}\binom{7}{2}\binom{3}{1} = 945.$$

(ii) In how many of these ways do two friends, a particular Australian and a particular New Zealander, belong to the committee?

Solution:
$$\binom{5}{1}\binom{6}{1}\binom{3}{1} = 90.$$

- (d) For the parabola $x^2 = 12y$:
 - (i) Derive the equation of the tangent at $(6t, 3t^2)$.

Solution:
$$\frac{dy}{dx} = \frac{2x}{12},$$

 $= \frac{x}{6}.$
 \therefore Tangent is $y - 3t^2 = \frac{6t}{6}(x - 6t),$
 $y - 3t^2 = tx - 6t^2,$
 $i.e. \ y = tx - 3t^2.$

(ii) Find the equations of the tangents that pass through the point (5, -2).

Solution: As they pass through (5, -2), $-2 = 5t - 3t^2$, $3t^2 - 5t - 2 = 0$, (3t + 1)(t - 2) = 0, $\therefore t = 2, -1/3$. \therefore When t = 2, tangent is y = 2x - 12, or 2x - y - 12 = 0. When t = -1/3, tangent is $y = \frac{-x}{3} - \frac{1}{3}$, or x + 3y + 1 = 0. $\boxed{2}$

2

1

(e) Find the value of the constants p and q if $x^2 - 4x + 3$ is a factor of $x^3 + px^2 - x + q$.

Solution: Method 1

$$x^{2}-4x+3 = (x-3)(x-1).$$

 $P(x) = x^{3}+px^{2}-x+q,$
 $P(3) = 27+9p-3+q = 0,$
 $9p+q+24 = 0.....1$
 $P(1) = 1+p-1+q = 0,$
 $p+q = 0....2$
 $1-2:$ $8p+24 = 0,$
 $p = -3,$
 $q = 3.$

Solution: Method 2

$$x^{3} + px^{2} - x + q = (x - \alpha)(x^{2} - 4x + 3),$$

 $= (x - \alpha)(x - 3)(x - 1) \text{ i.e. roots } \alpha, 3, 1.$
 $\Sigma \alpha : \alpha + 3 + 1 = -p,$
 $\alpha + 4 = -p.$
 $\Sigma \alpha \beta : 3\alpha + \alpha + 3 = -1,$
 $4\alpha = -4,$
 $\alpha = -1.$
 $\Sigma \alpha \beta \gamma : -1.3.1 = -q,$
 $q = 3,$
 $-1 + 4 = -p,$
 $p = -3.$

Solution: Method 3

$$\begin{array}{rcrcrcrcrc}
x & + & (p+4) \\
x^2 - 4x + 3 & & \\
\hline
x^3 & + & px^2 & - & x & + & q \\
& \underline{x^3 & - & 4x^2 & + & 3x} \\
\hline
& (p+4)x^2 & - & 4x & + & q \\
& \underline{(p+4)x^2 & - & 4(p+4)x & + & 3(p+4)} \\
\hline
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

(v) Loan of N;

$$k \ge Loon; y = 2a + 4an^{2} + k}$$

 $\therefore y = 2a + 4an^{2} + k}$
 $2n = 2a + 4an^{2} + k}$
 $3n + (-2m) = -4an - 8an^{2}$
 $n + (-2m) = -4an - 8an^{2}$
 $n + (-2m) = -4an - 8an^{2}$
 $n + (-2m) = 2a (-2n) + 4(-2n)^{2}$
 $n + (-2m) + 4(-2m)^{2}$
 $n + (-2m) + (-2m)^{2}$
 $n + (-2m) + (-2m)^{2}$