

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

November 2013

Assessment Task 1 Year 11

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks – 70

Section A (10 marks)

• Answer questions 1-10 on the Multiple Choice answer sheet provided.

Section B (60 Marks)

• For Questions 11-14, start a new answer booklet for each question.

Examiner: J. Chen

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

SECTION A [10 marks]

Attempt Questions 1-10

Use the multiple-choice answer sheet for Questions 1-10.

1. Consider the parametric equations x = t + 2 and $y = 4t^2$, find the Cartesian equation.

Marks

1

1

1

(A)
$$y = 4(x + 2)^2$$

(B) $y = 4(x - 2)^2$
(C) $y = 4\sqrt{x + 2}$
(D) $y = 4\sqrt{x - 2}$

- 2. What is the solution to the inequality $\frac{2}{x+1} \ge 1$?
 - (A) $-1 < x \le 1$ (B) $-1 \le x \le 1$ (C) x < -1 and $x \ge 1$ (D) $x \le -1$ and $x \ge 1$
- 3. What is the exact value of $\sin 75^\circ$?

(A)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

(B) $\frac{\sqrt{2}-\sqrt{6}}{4}$
(C) $\frac{1-\sqrt{3}}{2\sqrt{2}}$
(D) $\frac{1+\sqrt{3}}{2\sqrt{2}}$

- 4. What is the acute angle to the nearest degree between the lines 2x + 3y = 0and y - 3x + 5 = 0?
 - (A) 38°
 - (B) 67°
 - (C) 74°
 - (D) 75°

points (-3, 5) and (7, -5) internally in the ratio 2:3? (A) (-23,25) (B) (1,1) (C)(3,-1)(D) (-27, -25) $6. \quad 1 - \frac{\sin x \cos x}{\tan(90^\circ - x)} =$ 1 (A) 0 (B) $\sin^2 x$ (C) $\cos^2 x$ (D) $\frac{1}{\cos^2 x}$ 7. If k is a constant such that $x^3 - kx^2 + kx - 4$ is divisible by x - k, then k =1 (A) - 2(B) 0 (C) 2 (D) -2 or 28. Solve the equation $\frac{1}{\sin \theta + 1} = -1$, where $0^\circ \le \theta \le 90^\circ$. 1 (A) 0° (B) 30° (C) 90° (D) No solutions 9. If a < 0 < b, which of the following must always be true? 1 (A) a + 1 < b(B) $\frac{1}{a} < \frac{1}{b}$ (C) $a^2 > b^2$

5. What are the coordinates of the point which divides the interval with end

1

(D) -3a < -2b

- 10. A student committee consists of 20 boys and 15 girls. A team of 8 students is selected from the committee to participate in an activity. Find the probability that the team chosen consists of at least 3 boys and at least 3 girls, correct to 3 decimal places.
 - (A) 0.022
 - (B) 0.275
 - (C) 0.281
 - (D) 0.726

End of Multiple Choice Section

SECTION B [60 marks] Attempt Questions 11-14 Answer each question in a SEPARATE writing booklet.

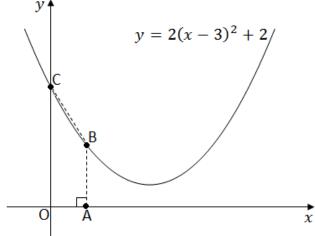
Question 11 [15 marks] – Use a SEPARATE writing booklet.	Marks
(a) Differentiate the following with respect to x :	
$\sin(x^{\circ})$	2
(b) How many numbers greater than 500 can be formed with the digits 2, 3, 5, 6 and 8 if no digit is repeated?	2
(c) Let $f(x) = 2x^3 + kx^2 - (2k - 1)x - 6$, and $x + 1$ is a factor of $f(x)$.	
(i) Find the value of k .	1
(ii) Let $g(x) = x^2 - 15x - 16$. Find the quadratic factor of $f(x) - g(x)$.	2
(d) Find the gradients of the 2 lines which make angles of 45° with the line whose equation is $3x - 4y + 5 = 0$.	2
(e) If $x = \sqrt{5 \cos 2\theta}$ and $y = 3 \cos^2 \theta$, find an equation independent of θ .	2
(f) The equation of the chord of contact from $P(x_0, y_0)$ is $xx_0 = 2a(y + y_0)$. [DO NOT PROVE THIS]	2
Find the coordinates of the point which gives a chord of contact of $x - 3y - 15 = 0$ to the parabola $x^2 = 12y$.	
(g) Find the exact value of $\sin 15^{\circ} \cos 15^{\circ}$.	2

End of Question 11

Que	estion 12	2 [15 marks] – Use a SEPARATE writing booklet.	Marks
(a)		(ap^2) is a variable point on the parabola $x^2 = 4ay$. The tangent to the la at <i>P</i> meets the <i>x</i> -axis at <i>A</i> and the <i>y</i> -axis at <i>B</i> .	
	(i)	Find the equation of the tangent at <i>P</i> .	1
	(ii)	Find the coordinates of <i>A</i> and <i>B</i> .	1
	(iii)	If M is the midpoint of A and B , describe the locus of M .	2
(b)	Solve s $t = \tan \theta$	$\sin x + \cos x + 1 = 0$ for $0^\circ \le x \le 360^\circ$ by using the substitution $n\frac{x}{2}$.	3
(c)	Find th	e primitives of the following functions with respect to x .	
	(i)	$y = \sec^2(3x - 2)$	1
	(ii)	$y = \frac{x}{3x^2 - 5}$	2
(d)	drawin	contains five cards numbered 1, 2, 3, 4 and 5 respectively. Mary repeats g one card at a time randomly from the bag without replacement until nber on the card drawn is 4. Find the total number of ways.	2
(e)	(i)	Sketch the curve $y = x \ln x$, showing stationary points and intercepts.	2
	(i)		4
	(ii)	Hence, or otherwise, find the value(s) of <i>k</i> for which $x \ln x = k$ has 1 solution.	1

End of Question 12

Question	13 [15 marks] – Use a SEPARATE writing booklet.	Marks
(a) If α , β	3 and γ are the roots of $x^3 - 2x^2 + 5x - 4 = 0$, find the value of	
(i)	$\alpha + \beta + \gamma$	1
(ii)	αβγ	1
(iii)	$\alpha^2 + \beta^2 + \gamma^2$	2
(iv)	$\alpha^3 + \beta^3 + \gamma^3$	2
(b) (i)	Show that $2x - 3$ is a factor of $8x^3 - 24x^2 + 40x - 33$.	1
(ii)	The diagram below shows the graph of $y = 2(x - 3)^2 + 2$. <i>B</i> is a variable point on the graph in the first quadrant. <i>A</i> is the foot of the perpendicular from <i>B</i> to the <i>x</i> -axis. <i>C</i> is the point of intersection of the graph $y = 2(x - 3)^2 + 2$ and the <i>y</i> -axis.	
	$y \downarrow \qquad $	



(α)	Let $(2m, 0)$ be the coordinates of <i>A</i> . Express the area of the trapezium <i>OABC</i> in terms of <i>m</i> .	2
(β)	If the area of the trapezium <i>OABC</i> is 33, find the coordinates of <i>B</i> .	2

(c) Find the general solution of the trigonometric equation $\sin 3\theta = \sin \theta$, express 4 your answer in radians.

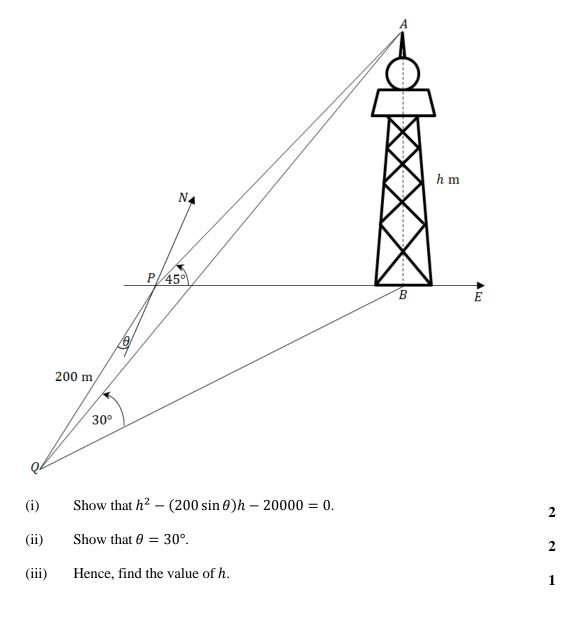
End of Question 13

Que	estion 1	4 [15 marks] – Use a SEPARATE writing booklet.	
(a)			Marks
(u)	(i)	Write $2 \sin x - \cos x$ in the form $R \sin(x - \alpha)$, correct α to the nearest degree.	2
	(ii)	Hence, solve $2 \sin x - \cos x = 1$ for $0 \le x \le 360^\circ$.	1
(b)	commi	are 5 different maths classes in year 12. To form a graduate dinner tittee of 15 members, 3 representatives are nominated by each class. he committee, 4 members are randomly selected.	
	(i)	Find the number of ways if the 4 selected members are nominated by 2 different classes.	2
	(ii)	Find the probability that the 4 selected members are nominated by at least 3 different classes.	2
(c)	For 0	$\leq \theta \leq \frac{\pi}{2}$, find the greatest value of	3

$$\frac{\cos^2\left(\frac{\pi}{2}-\theta\right)-2\cos^2\theta}{20}$$

Question 14 continues on next page

(d) The diagram below shows a tower AB with height *h* m. The angle of elevation of *A* from the observers P and Q are 45° and 30° respectively. The bearing of Q from P is $S\theta W$ and the bearing of AB from Q is $N(30^\circ + \theta)E$. The distance between P and Q is 200 m.



End of Question 14 End of Exam BLANK PAGE

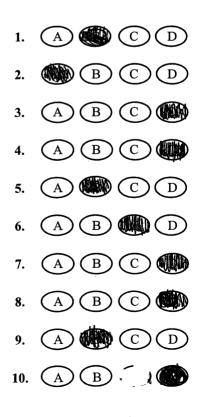
Student Number: ANSWERS

Mathematics Extension Task 1 2013

Sample:	2 + 4 =	(A) 2 A ()	(B) 6 B ●	(C) 8 C ()	(D) 9 D 🔿	
-	-	e a mistake, pr	it a cross throu	gh the incorrec	t answer and fill in th	ne
iew answer	•	A	в 🗮	СО	D 🔿	
	~ •	r by writing the	e word correct a	nd drawing an a	the correct answer, wrow as follows.	then
		A 🗮	в	C O	D 🔿	

Section I: Multiple choice answer sheet.

Completely colour the cell representing your answer. Use black pen.



2013 Ext 1, Task) ノニ之か (a) y = sin(x)a) y = Ain(x) = Ain(x + TT) = Ain(x + TT) y' = TT cos(TT) + OT TTSO cos(x) y' = TSO cos(TT) + OT TTSO cos(x)(b) Nos > 500 with 2, 3, 5, 6, 8 - no repetitions $\frac{3 \operatorname{digits}}{7} \xrightarrow{3} \times \underbrace{4} \times \underbrace{3} = 36$ $5,6 \operatorname{or} 8$ $\frac{254 \text{ digits } [5] \times [4] \times [3] \times [2] = 120}{2}$ $\frac{\partial r}{\partial t} \frac{5 + 4 \times 3 \times 2 \times 1}{T \partial t} = 120$ $\frac{1}{2}$ $\frac{1}{2$ $\frac{(c) f(x) = 2x^3 + kx^2 - (2k - 1)x - 6}{2k - 1}$ (i) f(-1) = 0 =) 0 = -2 + k + 2k - 1 - 6 $\frac{3k=9}{k=3}$ $(ii) g(x) = x^2 - 15x - 16$ Then $f(x) - g(x) = 2x^3 + 3x^2 - 5x - 6 - (x^2 - 15x)$ = $2x^3 + 2x^2 + 10x + 10$ = $2(x^3 + x^2 + 5x + 5)$

(ii) (cont $\frac{3}{(3+\chi)}$ $\chi + 1$ 2+5x+5 $\frac{\chi}{\chi^3 + \chi^2}$ 5)(+5 $= 2(x+1)(x^2+5)$ Then 5c22+5 c factor is Qua d = 4535c - 4y + 5 = 0y = 345c + 54 $m_{r} =$ Then lines which are 45° to given line let 24 be $m_2 x + b$ tan 45° $\frac{3\chi - m_2}{1 + 3\chi m_2}$ $\frac{2}{3 \xi m_2}$ $\frac{3}{4} - m_2$ $\frac{1}{1 + 3} (m_2)$ $\frac{3_{4}-m_{2}}{1+3_{4}m}$ -----1+ 4m2/ or 3/4-m2 =) 34-m2= 4m $=) m_2 = \frac{1}{2}$ $=) m_2 =$ V or

If $x = 5co_2 0$ (1) and $y = 3co_2^2 0$ (2) $From (2)' y = 3(\frac{1}{2}(cos 20 + 1)) V$ =) y = 3/2 cos 20 + 3/2 (3) V $From(1) \quad \chi^2 = 5\cos 2\theta$ $\Rightarrow \cos 2\theta = \frac{\chi^2}{5} (4) \sqrt{2}$ Sub (4) into (3) => $y = \frac{3x^2 + 3}{10} \sqrt{\sigma 10y} = 3x^2$ $(f) \quad \mathcal{X}_{6} = 2a(y+y_{6})$ $a=3 \implies xx_0 = 6(y+y_0)$ Now x = 3y = 15 = 0=) x = 3(y + 5) $x^{2} = 3(x + 5) \cdot \sqrt{2}$ Since $(1 \equiv 2) \implies \chi_0 = 2, y_0 = 5$ $= 2 p_0 + in/2 = 1$ \Rightarrow Point is (2,5)Now Amor cosoc g) Am 15 cos 15 = = Am 12 Am 30° VV 12 X 12 = 14

$$12)a)i) = x^{\frac{1}{2}} 4ay$$

$$y^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{2a}$$

$$y' = \frac{x}{2a}$$

$$\frac{y' = \frac{x}{2a}}{2a}$$

$$\frac{-e}{p}$$

$$\frac{y - \frac{1}{2a}}{y - \frac{2ap}{2}}$$

$$\frac{-e}{p}$$

$$\frac{y - \frac{1}{2a}}{y - \frac{2ap}{2}}$$

$$\frac{y - \frac{1}{2ap}}{y - \frac{2ap}{2}}$$

$$\frac{y - \frac{1}{2ap}}{px - \frac{2ap}{2}}$$

$$\frac{px - \frac{ap}{2}}{px - \frac{ap}{2}}$$

$$\frac{e}{px} - \frac{1}{2ap}$$

$$\frac{y - \frac{1}{2ap}}{px - \frac{ap}{2}}$$

$$\frac{e}{px} - \frac{1}{2ap}$$

$$\frac{y - \frac{1}{2ap}}{px - \frac{ap}{2}}$$

$$\frac{y - \frac{ap}{2}}{px - \frac{ap}{2}}$$

$$\frac{x - \frac{ap}{2}}{px - \frac{ap}{2}}$$

$$y = -\frac{ap}{2}$$

$$y = -\frac{ap}{2}$$

$$y = -\frac{ap}{2}$$

$$y = -\frac{a(\frac{1}{2a})^{\frac{1}{2}}}{2}$$

$$y = -\frac{2x^{2}}{a}$$

$$x^{2} = -\frac{ay}{2}$$

$$\frac{x^{2} = -\frac{ay}{2}}{a}$$

$$\frac{x^{2} = -\frac{ay}{2}}{a}$$

$$\frac{x^{2} = -\frac{ay}{2}}{a}$$

$$\frac{x^{2} = -\frac{ay}{2}}{a}$$

$$\frac{b}{b} = \frac{b^{2} + cosx + 1 = 0}{b^{2} + cosx + 1 = 0}$$

$$\frac{b}{b} = \frac{b^{2} + cosx + 1 = 0}{b^{2} + cosx + 1 = 0}$$

$$\frac{b}{b} = \frac{b^{2} + cosx + 1 = 0}{c^{2} + c^{2} + 1 = 0}$$

$$\frac{2t}{1 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} + 1 = 0$$

$$\frac{2t}{1 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} + 1 = 0$$

$$\frac{2t}{2 + 1 - t^{2} + 1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2} + 1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + 1 - t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{2 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{1 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} = 0$$

$$\frac{2t}{1 + t^{2}} + \frac{1 + t^{2}}{1 + t^{2}} + \frac{1 + t^{2}$$

 $\int \frac{x}{3\pi^2 - 5} dx$ $= \frac{1}{6} \int \frac{6\pi}{3\pi^2 - 5} d\pi$ $= \pm \ln (3n^2 - 5) + C$ d) [4] or _14] or __14] or __14] $+ 4 \times 1 + 4 \times 3 \times 1 + 4 \times 3 \times 2 \times 1 + 4 \times 3 \times 2 \times 1 \times 1$ = 65 e) i) y=xlnx y=x. + 1. Inx y'= 1 + 1 m x $y'=\frac{1}{x}$ let y'= o for stat. points $1 \neq \ln n = 0$ nx = -1 $x = e^{-1}$ when x= f y"= (±) =e >0 / $y = \frac{1}{e} ln \left(\frac{1}{e}\right)$ $y = -\frac{1}{e}$: Minimum Turning Point at (É, É)

Domain: x70 let y=0 O=nlnx x=0 0- /n x=0 but $\pi > 0$, $\pi = 1$ as $x \rightarrow 0^+$ 4→0 as $x \rightarrow +\infty$ y -> + 00 Note: since y'= 1 and x>0 y">0 CONCAVE UP. 1 y=x lnx (te, te) ii) consider where y=k (aborizontal line) intersects the above curve (y=xlnx) in one place. k=-e, k7,0.

QUESTION 13 $(a)(i) \rightarrow \beta + \beta + T = 2$ (ii) +BY= 4 (iii) $\sigma_{B+\lambda}Y+\beta Y=5$ $(\alpha + \beta + \gamma)^{2} = \chi^{2} + \beta^{2} + \gamma^{2} + 2(\lambda \beta + \lambda + \beta + \beta)$ $z + \beta + r^2 = (z + \beta + r)^2 - 2(z + z + \beta + r).$ = 4 - 10 =-6 (iv) $\lambda^{3} = 2\lambda^{2} + 5\lambda - 4 = 0$ $\beta^{3} = 2\beta^{2} + 5\beta - 4 = 0$ $\gamma^{3} = 2\gamma^{2} + 5\gamma - 4 = 0$ $\lambda^{3} + \beta^{3} + 2(\lambda^{2} + \beta^{2} + \gamma^{2}) + 5(\lambda + \beta + \gamma) - 12 = 0$ x3+B3++3+12+10-12=0. $\chi^{3} + \beta^{3} + \gamma^{3} = -10.$ 2

3. (b)(i)(2z-3) $8(\frac{3}{2})^{3} - 24(\frac{3}{2})^{2} + 40(\frac{3}{2}) - 33$ = 27 - 54 + 60 - 33=0 (ii) (d) A(2m, 0) $B(2m, 2(2m-3)^{2}+2)$ C(0, 20)Area = m (2(2m-3)2+22+20) $= 2m(2m-3)^2 + 22m$ = 8m³-24m²+40m. 2 (B) $33 = 8m^3 - 24m^2 + 40m$. $8m^{3}-24m^{2}+40-33=0$ m= 3 is a solution from part (i). B(3,2).2

Sin 30 - Sin 20 cost + Cos20 sma (\mathcal{C}) = $2 \sin \theta \cos^2 \theta + \cos^2 \theta \sin \theta - \sin^3 \theta$ $= 3\sin\theta(1-\sin^2\theta) - \sin^3\theta$ $= 3 \sin \Theta - 4 \sin^3 \Theta$ 0, 351-0 - 451-20 = 51n0 43,30 - 25m0=0 Z SM 30 - Sin0 =0 Sin (2512 (-1) =0 Since O $sun Q = \pm \frac{1}{\sqrt{2}}$ $\Theta = nT \pm T_{4}$ Oz nT 0= T2 + T+ 4 where NEZ.

2013 Extension Mathematics Task 1: Solutions— Question 14

14. (a) (i) Write $2\sin x - \cos x$ in the form $R\sin(x - \alpha)$, correct α to the nearest degree.

Solution: $R = \sqrt{2^2 + 1^2},$ $= \sqrt{5}.$ $\tan \alpha = \frac{1}{2},$ $\alpha \approx 27^{\circ}.$ $\therefore 2 \sin x - \cos x = \sqrt{5} \sin(x - 27^{\circ}).$

(ii) Hence, solve $2\sin x - \cos x = 1$ for $0^{\circ} \le x \le 360^{\circ}$.

Solution:
$$\sqrt{5}\sin(x-27^\circ) = 1$$
,
 $x - 27^\circ = \sin^{-1}\frac{1}{\sqrt{5}}$,
 $= 27^\circ$, $(180 - 27)^\circ$,
 $\therefore x = 54^\circ$, 180° .
If using the calculated (not rounded) value of α ,
the result is $x = 53^\circ$, 180° .

- (b) There are 5 different maths classes in year 12. To form a graduate dinner committee of 15 members, 3 representatives are nominated by each class. From the committee, 4 members are randomly selected.
 - (i) Find the number of ways if the 4 selected members are nominated by 2 different classes.

Solution: Ways of choosing classes = ${}^{5}C_{2}$, = 10. The possibilities are 3 & 1 or 2 & 2 or 1 & 3, Ways of choosing 3 & 1 = 1 × 3, Ways of choosing 2 & 2 = ${}^{3}C_{2} \times {}^{3}C_{2}$, = 9, Ways of choosing 1 & 3 = 3 × 1, \therefore Total ways = 10(3 + 9 + 3), = 150.

(ii) Find the probability that the 4 selected members are nominated by at least 3 different classes.

Solution: Ways of not choosing $2 = {}^{15}C_4 - 150$, = 1215. \therefore Probability(at least 3 different) = $\frac{1215}{{}^{15}C_4}$, = $\frac{81}{91}$. $\boxed{2}$

2

1

|2|

(c) For $0 \leq \theta \leq \frac{\pi}{2}$, find the greatest value of

$$\frac{\cos^2\left(\frac{\pi}{2}-\theta\right)-2\cos^2\theta}{20}.$$

Solution: $\frac{\cos^2\left(\frac{\pi}{2} - \theta\right) - 2\cos^2\theta}{20} = \frac{\sin^2\theta - 2\cos^2\theta}{20}.$ Clearly, as θ goes from 0 to $\frac{\pi}{2}$, $\sin\theta$ and also $\sin^2\theta$ goes from 0 to 1 and $\cos\theta$ and also $\sin^2\theta$.

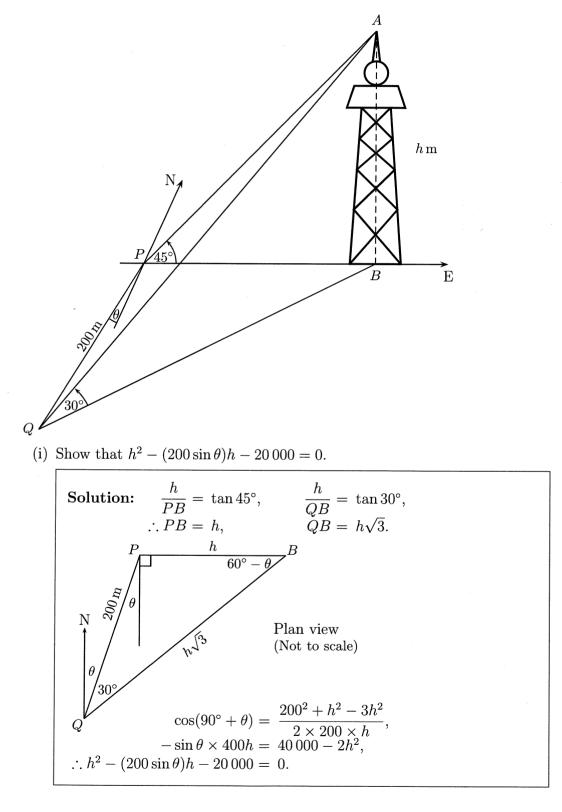
 $\cos \theta$ and also $\cos^2 \theta$ goes from 1 to 0. Over this domain, $\sin^2 \theta$ is monotonic increasing and $\cos^2 \theta$ is monotonic decreasing. So the sum, $\sin^2 \theta - 2\cos^2 \theta$, is monotonic increasing.

 \therefore Maximum at $\frac{\pi}{2}$ is $\frac{1}{20}$.

Solution: Alternative method— Put $f(\theta) = \cos^2\left(\frac{\pi}{2} - \theta\right) - 2\cos^2\theta$, $= \sin^2\theta - 2\cos^2\theta$. $f'(\theta) = 2\sin\theta\cos\theta + 4\sin\theta\cos\theta$, $= 3\sin 2\theta$, = 0 when $2\theta = 0, \pi$, *i.e.* when $\theta = 0, \frac{\pi}{2}$ we have a stationary point. Testing, f(0) = 0 - 2 = -2, $f(\frac{\pi}{2}) = 1 - 0 = 1$. So the maximum is $\frac{1}{20}$ when $\theta = \frac{\pi}{2}$.

Solution: Another alternative— $\cos^{2}\left(\frac{\pi}{2}-\theta\right) - 2\cos^{2}\theta = \sin^{2}\theta - 2\cos^{2}\theta,$ $= 1 - \cos^{2}\theta - 2\cos^{2}\theta,$ $= 1 - 3\cos^{2}\theta.$ $0 \leqslant \theta \leqslant \frac{\pi}{2},$ but $\cos 0 \geqslant \cos \theta \geqslant \cos \frac{\pi}{2},$ $1 \geqslant \cos \theta \geqslant 0,$ $1 \geqslant \cos^{2}\theta \geqslant 0,$ $-3 \leqslant -3\cos^{2}\theta \leqslant 0,$ $-2 \leqslant 1 - 3\cos^{2}\theta \leqslant 1,$ $\frac{-2}{20} \leqslant \frac{1 - 3\cos^{2}\theta}{20} \leqslant \frac{1}{20},$ $-\frac{1}{10} \leqslant \frac{1 - 3\cos^{2}\theta}{20} \leqslant \frac{1}{20}.$ *i.e.* the maximum is $\frac{1}{20}$ when $\theta = \frac{\pi}{2}.$

(d) The diagram below shows a tower AB with height h m. The angles of elevation of A from the observers P and Q are 45° and 30° respectively. The bearing of Q from P is S θ W and the bearing of AB from Q is N(30° + θ)E. The distance between P and Q is 200 m.



(ii) Show that $\theta = 30^{\circ}$.

Solution:

$$\frac{\cancel{k}}{\sin 30^{\circ}} = \frac{\cancel{k}\sqrt{3}}{\sin(90^{\circ} + \theta)},$$

$$2\cos\theta = \sqrt{3},$$

$$\cos\theta = \frac{\sqrt{3}}{2},$$

$$\therefore \theta = 30^{\circ}.$$

(iii) Hence, find the value of h.

Solution: Substitute (ii) in (i) $h^2 - 200 \times \frac{1}{2} \times h - 20\,000 = 0,$ $h^2 - 100h + 50^2 = 20\,000 + 2500,$ $(h - 50)^2 = 22\,500,$ $h - 50 = \pm 150,$ h = 200 or -100.*i.e.* h is 200 m (as h > 0). 2