Sydney Girls High School

November 2014

YEAR 12
 ASSESSMENT TASK 1 for HSC 2015

Time Allowed: 60 minutes
 + 5 minutes Reading Time

Topics: Mathematical Induction, Parametric Equations and Circle Geometry.

General Instructions:

- There are Seven (7) Questions of equal marks.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each Question on a new page.
- Write on one side of paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Write your student number clearly at the top of each question and clearly number each question.

Total: 56 marks

Student Name: \qquad Teacher Name: \qquad

Question 1 (8 marks)

a) Find the equation of the tangent to the parabola $x=6 t, y=3 t^{2}$ at the point where $t=2$.
b) Normals are drawn at two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ to the parabola $x^{2}=4 a y$.
i) Derive the equation of the normal at P.
ii) Find the point of intersection of these two normals.

Question 2 (8 marks)

a) Copy or trace the diagram onto your answer page.

i) $\quad P T$ is a tangent to the circle. Prove that $\triangle T B P \|| | A T P$.
ii) Given that $T P=12 \mathrm{~cm}$ and $A P=16 \mathrm{~cm}$, find $B P$.
b) Prove by mathematical induction that $3^{4 n}-1$ is divisible by 80 for $n \geq 1$.

Question 3 (8 marks)

a)

i) Find $\angle C O B$ with reasons.
ii) Find $\angle O C B$ with reasons.
b) Prove by Mathematical induction that $4^{n} \geq 1+3 n$ for all $n \geq 1$.

Question 4 (8 marks)

a) Derive the Cartesian equation for $x=2 t-1, y=3 t^{2}+1$
b) The chord $P Q$ of the parabola $x^{2}=12 y$ passes through the point $C(8,0)$. If $\mathrm{P}\left(6 p, 3 p^{2}\right)$ and $\mathrm{Q}\left(6 q, 3 q^{2}\right)$.
i) Derive the equation of the chord $P Q$.
ii) Show that $4(p+q)=3 p q$.
iii) Find the locus of M, midpoint of $P Q$.

Question 5 (8 marks)

a) Consider the points A, B and C lying on the circle, with tangents drawn from A and B, meeting at P. $A C$ is parallel to $B P$. Copy the diagram.
i) Let $\angle C A B=x^{\circ}$. Prove $A B=B C$.
ii) Prove $\angle A B C=\angle A P B$.

b) $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ are two points on the parabola $x^{2}=4 y$.

The chord $P Q$ subtends a right angle at the origin O. Show that $p q=-4$.
c) Find $\angle A F E$, give reasons.

Question 6 (8 marks)

a) Use Mathematical Induction to prove for all integers $n \geq 1$
b) Two points $P\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The tangent at P and the line through Q parallel to the y axis intersect at T.
i) Draw a diagram to illustrate the information above.
ii) Show that the coordinates of T are ($2 a q, 2 a p q-a p^{2}$), given the tangent at P is $y=p x-a p^{2}$
iii) Find the locus of M, the midpoint of PT when $p q=-1$.

Question 7 (8 marks)

a) A chord of contact to the parabola $x^{2}=4 y$, has the equation $y=x+3$.

Determine the external point from which the tangents are drawn.
b) $A B C D E$ is a pentagon where $A B=A E, \angle A E B=x$ and $\angle B A C=y$.
i) Prove that $\angle A E B=\angle E C A$
ii) Prove that $\angle B Q C=x+y$
iii) Prove that $P Q C D$ is a cyclic quadrilateral.

The End.

EXT 1 TASK 12014.
Q1
a)

$$
\begin{aligned}
t & =\frac{x}{6} \\
y & =3\left(\frac{x}{6}\right)^{2} \\
& =\frac{3 x^{2}}{36} \\
& =\frac{x^{2}}{12} \\
y^{\prime} & =\frac{x}{6}
\end{aligned}
$$

at $t=2 \quad x=12$

$$
\begin{aligned}
& y^{\prime}=2 \\
& y-12=2(x-12) \\
& y=2 x-24+12 \\
& y=2 x-12
\end{aligned}
$$

bi)

$$
\begin{aligned}
& x^{2}=4 a y \\
& y=\frac{x^{2}}{4 a} \\
& y^{\prime}=\frac{x}{2 a} \\
& a+x=2 a p \\
& m_{1}=p
\end{aligned}
$$

many students thar
poor setting out are didn't simplify their answer.

$$
m_{2}=-\frac{1}{\rho}
$$

$$
y-a p^{2}=-\frac{1}{p}(x-2 a p)
$$

$$
y p-a p^{3}=-x+2 a p
$$

$$
\begin{aligned}
& x+y p=a p^{3}+2 a p \\
& x+y q=a q^{3}+2 a q
\end{aligned}
$$

$$
x+y q=a q^{3}+2 a q
$$

Q2.
a.

Notes: Part a. done vel. Another solution for ii used $A P \cdot P B=P T^{-}$ and included angle P.
i in $\triangle T B P, \triangle A T P$,
$\angle P T B=\angle P A T$ (\angle between tangent and chord $=\langle$ in alternate segment)
$\angle B P T=\angle T P A$ ($\angle P$ is common)
$\therefore \triangle T B P \| \triangle A T P$ (equiangular)
ii. $A P \cdot P B=P T^{2}$ (square of tangent $=$ product of interests of secant)
$\therefore 16 \times P B=12^{2}$

$$
P B=\frac{144}{16}=9 \mathrm{~cm}
$$

b. Prove that $3^{4 n}-1=80 p$ where p is an integer for $n \geqslant 1$
step 1: show true for $n=1$

$$
\begin{aligned}
\text { LHS } & =3^{4}-1 \\
& =81-1 \\
& =80 \\
& =\text { R HS with } p=1
\end{aligned}
$$

stop 2: assume true for $n=k$
ie, $\quad 3^{4 k}-1=80 q$
step 3: prove true for $n=k+1$
ie, prove that: $3^{4(k+1)}-1=80 \mathrm{p}$

$$
\begin{aligned}
\text { prove } & =3^{4 k+4}-1 \\
& =3^{4 k} \times 3^{4}-1 \\
& =(80 q+1) \times 3^{4}-1 \\
& =80 q \times 3^{4}+3^{4}-1 \\
& =80 q \times 3^{4}+80
\end{aligned}
$$

$$
\begin{aligned}
& =80\left(3^{4} \times q+1\right) \\
& =80 p \quad \text { where } p=3^{4} \times q+1
\end{aligned}
$$ and p is an integer.

\therefore if the statement is true for $n=k$, then is also true for $n=k+1$.

- since true for $n=1$, also true for $n=1+1=2$, and hence for all integers $n \geqslant 1$, by the principle of Mablematireal induction.

Notes: a number of students treed to prove $3^{\text {Ak +1 }}-1=80 p$ instead of $3^{4(k+1)}-1=80 p$ and ran into difficulties. Be very careful worth the initial algebra!

Qu
a)
i) $\angle C O B=70 \times 2 \angle$ at the centre is twice $=140^{\circ}($ the \angle at the ciramet
Standing on the Same Arc
ii) $\angle O C B=\angle O B C$ (Base \angle 's of Isosceles \triangle
$2 \times \angle O C B=180^{\circ}-140^{\circ}$ (Sum $\angle{ }^{\prime}$ ' of a

$$
\angle O C B=\frac{40}{2}=20^{\circ} \mathrm{V}
$$

* All students did well in this question.
b) $4^{n} \geqslant 1+3 n$ for $n \geqslant 1$

Prove it is true for $n=1$
$4^{1} \geqslant 1+3$. Which is true.

- Assume it is tree for $n=k$

$$
\begin{align*}
& 4^{k} \geqslant 1+3 k \\
& 4^{k}-3 k-1 \geqslant 0 \tag{*}
\end{align*}
$$

- Prove it is true for $n=k+1$

T There are $\}$
$\begin{aligned} & \text { several ways } \\ & \text { of proving }\end{aligned} 4^{k+1}-3 k-4 \geqslant 0$
of proving
this kind of $4\left(4^{k}-3 k-4 \geqslant 0\right.$

- question
question $\begin{aligned} & \text { some students this is true as }\end{aligned}$
did not show the $\left(4^{k}-3 k-4\right) \geqslant 0$ from (*) and $9 k \geqslant c$ proper and:. It is true for $n=k+1$, but it is true logical prove) for $n=1$. It is proven by Mathematic for $n \geqslant 1$.

2014 EXt 1 TaSk 1.
Q4 (a)

$$
\begin{aligned}
& x=2 t-1 \quad y=3 t^{2}+1 \\
& t=\frac{x+1}{2} \\
& \text { Comment: Students } \\
& y=3\left(\frac{x+1}{2}\right)^{2}+1 \quad \begin{array}{l}
\text { Sorgol to squer th } \\
\text { Senominatem. Aso } \\
\text { Some didn it }
\end{array} \\
& \text { sone didn't" } \\
& y=3\left(\frac{x^{2}+2 x+1}{4}\right)+\left(\begin{array}{l}
\text { moltiply the }+11 \\
\text { by } 4 \text { : }
\end{array}\right. \\
& 4 y=3 x^{2}+6 x+7 .
\end{aligned}
$$

or

$$
\begin{aligned}
& (x+1)^{2}=\frac{4}{3}(y-1) . \\
& \text { (b) }(1) p\left(6 p, 3 p^{2}\right) \quad Q\left(6 q, 3 q^{2}\right) \\
& m_{p a}=\frac{3 p^{2}-3 q^{2}}{6 p-6 q} \text { Commenter Many } \\
& { }^{6 p-6 q} \text { spodrents ised the } C(8,0) \text { in shed } \\
& =\frac{1}{2}(p+q) \text {. }
\end{aligned}
$$

can

$$
\begin{aligned}
y-3 p^{2} & =\frac{1}{2}(p+q)(x-6 p) . \\
y-3 p^{2} & =\frac{1}{2}(p+q) x-3 p^{2}-3 p q \\
y & =\frac{1}{2}(p+q) x-3 p q
\end{aligned}
$$

(ii) $C(8,0)$

$$
\begin{aligned}
& 0=\frac{1}{2}(p+q) \times 8-3 p q \\
& 3 p q=4(p+q) .
\end{aligned}
$$

() (iii)
()

$$
\begin{aligned}
& M\left(\frac{6 p+6 q}{2}, \frac{3 p^{2}+3 q^{2}}{2}\right) \\
& M\left(3(p+q), \frac{3}{2}\left(p^{2}+q^{2}\right)\right) \\
& x=3(p+q) \Rightarrow p+q=\frac{x}{3} \\
& y=\frac{3}{2}\left(p^{2}+q^{2}\right) \\
& y=\frac{3}{2}\left(\left(p^{+}+q\right)^{2}-2 p q\right)
\end{aligned}
$$

Frow pant (ii) $p q=\frac{4}{3}(p+q)$

$$
\begin{aligned}
y & =\frac{3}{2}\left((p+y)^{2}-\frac{8}{3}(p+4)\right) \\
y & =\frac{3}{2}\left(\left(\frac{x}{3}\right)^{2}-\frac{8}{3}\left(\frac{x}{3}\right)\right) \\
& =\frac{3}{2}\left(\frac{x^{2}}{4}-\frac{8 x}{9}\right) \\
y & =\frac{x^{2}}{6}-\frac{8 x}{6} \\
6 y & =x^{2}-8 x \text { or }(x-4)^{2}=4\left(\frac{3}{2}\right)\left(y+\frac{8}{3}\right)
\end{aligned}
$$

5 a/ i) $x^{\circ}=A \hat{B p}$ (alt $\left.<0, A C\|B\|_{p}\right)$
$\hat{A C B}=\hat{A B P}$ (\angle in alt egrets)

$$
\therefore x^{\circ}=A \hat{C} B
$$

$\therefore A B C$ cuisines (hare coequal)

$$
\therefore A B=B C
$$

ii) $\hat{A C B}=\hat{B A P}$ (\angle in alt segments)

$$
\therefore x^{\circ}=C \hat{A B}=\hat{B C A}=\hat{A B P}=\hat{B A} P
$$

$A \hat{B} C+2 x=180^{\circ}$ ($\angle \mathrm{mm}$ of $\triangle A B C$)
$A P_{B}+2 n=180^{\circ}(1 \mid A B P)$

$$
\therefore A \hat{B} C=A \hat{P B}
$$

人)

$$
\begin{gathered}
m_{0 p} \times m_{O Q}=-1 \\
\frac{p^{2}-0}{2 p-0} \times \frac{q^{2}-\theta}{2 q-0}=-1 \\
\frac{p q}{q}=-1 \\
\therefore p q=-4
\end{gathered}
$$

<) $E \hat{B} C+95^{\circ}=180^{\circ}$ (off <s ot a eyed quad)

$$
E \hat{B C}=85^{\circ}
$$

$\hat{A F E}=E \hat{B C}$ (ext \angle of a cyclic quad)

$$
=85^{\circ}
$$

Question 6 (8 Marks)
a) Let $S(n): 1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+n \times 2^{n}=(n-1) 2^{n+1}+2$

For $n=1$:

$$
\begin{aligned}
L H S & =n \times 2^{n} & \text { RUS } & =(n-1) 2^{n+1}+2 \\
& =1 \times 2^{\prime} & & =(1-1) 2^{1+1}+2 \\
& =2 & & =2
\end{aligned}
$$

\therefore LAS $=$ RHS $\therefore S(n)$ is true for $n=1$.
Assume $s(k)$ is true for some integer $k, k \geqslant 1$
That is: $1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+k \times 2^{k}=(k-1) 2^{k+1}+2$
Prove $S(k+1)$ is true. That is show that.

$$
\begin{aligned}
1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+k \times 2^{k}+(k+1) \times 2^{k+1} & =(k+1-1) 2^{k+1+1}+2 \\
& =k \cdot 2^{k+2}+2 \\
\text { LIS } & =\left(\times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+k \times 2^{k}+(k+1) 2^{k+1}\right. \\
& =(k-1) 2^{k+1}+2+(k+1) 2^{k+1} \sqrt{(\text { assumption })} \\
& =2^{k+1}(k-1+k+1)+2 \\
& =2^{k+1} \cdot 2 k+2 \\
& =k \cdot 2^{k}!2^{k+1}+2 \\
& =k \cdot 2^{k+2}+2 \\
& =\text { RUS }
\end{aligned}
$$

$\therefore S(n)$ is true for $n=k+1$, whenever it is true for $n=k$. $S(n)$ is true for $n=1$ and by the Prinuple of mathematical induction is true for all integers $n \geqslant 1$.

ii) When $x=2 a q: y=p(2 a q)-a p^{2}$

$$
\begin{aligned}
& =2 a p q-a p^{2} \\
\therefore T & =\left(2 a q, 2 a p q-a p^{2}\right)
\end{aligned}
$$

iii)

$$
\begin{aligned}
\text { Midpoint of } p T & =\left(\frac{2 a p+2 a q}{2}, \frac{2 a p q-a p^{2}+\partial p^{2}}{2}\right. \\
& =\left(\frac{2 a(p+q)}{2}, \frac{2 a p q}{8}\right) \\
& =(a(p+q), a p q) .
\end{aligned}
$$

Locus: $\left\{\begin{array}{l}x=a(p+q) \\ y=a p q\end{array}\right.$
since $p q=-1: y=-a$
\therefore Locus is the directrix of the parabola $x^{2}=4 a y$.
(a) (i) Let $\left(x_{1}, y_{1}\right)$ be the external point.
$a=1$
$x x_{1}=2 a\left(y+y_{1}\right) \quad \therefore x x_{1}=2\left(y+y_{1}\right)$
$y=\frac{x_{1}}{2} x-y_{1}$

$$
\therefore \frac{x_{1}}{2}=1,-y_{1}=3
$$

Hence the external point is $(2,-3)$.

COMMENT :

Many students did not recognise the opportunity to use the chord of contact formula and spent much longer on the solution than was required.

(b) (i) $\triangle B A E$ is isoceles (given, $A B=A E$)
$\angle A B E=\angle A E B=x($ base $\angle \mathrm{s}$ of isos. $\triangle)$
$\angle A B E=\angle E C A(\angle \mathrm{~s}$ in same segment $)$
$\therefore \angle A E B=\angle E C A=x($ both equal $\angle A B E)$
(ii) $\angle A B E=x$ (proven above)
$\angle B Q C=\angle A B Q+\angle B A Q($ ext. \angle of $\triangle \mathrm{AQB})$
$\therefore \angle B Q C=x+y$
(iii) $\angle B D C=\angle B A C=y(\angle$ s in same segment $)$
$\angle A D B=\angle A E B=x(\angle \mathrm{~s}$ in same segment $)$
$\therefore \angle P D C=\angle A D B+\angle B D C=x+y$
$\therefore P Q C D$ is a cyclic quadrilateral
(ext. \angle of quad. is equal to opp. int. \angle)

COMMENT :

Many students did not attempt this question fully - presumably due to time running out at the end of the exam period.

As with all proofs, please ensure reasoning is provided for each step of your explanation.

