Sydney Girls High School

November 2015

MATHEMATICS EXTENSION 1

Year 12
 ASSESSMENT TASK 1 FOR HSC 2016

Time Allowed: 60 minutes +5 minutes reading time

Topics: Integration, Trigonometric Functions II, Parametric Equations

General Instructions:

- There are Seven (7) questions each worth 8 marks
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each question on a new page.
- Write on one side of the paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Mathematics reference sheet is provided.

TOTAL: 56 MARKS
(a) Find $\int \frac{d x}{(2 x-1)^{4}}$ 2
(b) Evaluate $\int_{-2}^{3}\left(5-x^{2}\right) d x$ 2
(c) Find the exact value of $\cos 75^{\circ}$. 2
(d) Find the Cartesian equation of a function whose parametric equations 2 are $x=2 t$ and $y=t^{2}-1$.
(a) Given that $\int_{1}^{2} f(x) d x=3$ and $f(x)+f(-x)=0$ find $\int_{-2}^{-1} f(x) d x$.
(b) Find the area bounded by the curve $y=9-x^{2}$ and the x axis.
(c) Given that the exact value of $\sin x$ is $\frac{7}{15}$ and the exact value of $\cos y$ is $\frac{1}{\sqrt{3}}$ find the exact value of $\sin (x+y)$ where x and y are acute.
(d) The point $\left(8 t, 4 t^{2}\right)$ lies on the parabola $x^{2}=16 y$. Find the equation of the chord whose endpoints have parameters 2 and -1 .
(a)

Evaluate
(i) $\int_{0}^{2} f(x) d x$
(ii) $\int_{3}^{5} f(x) d x$
(iii) $\int_{-2}^{6} f(x) d x$
(b) Solve $\sin 2 x-\sin x=0$ for $0 \leq x \leq 2 \pi$.
(c) For the parabola $x=6 t, y=3 t^{2}$ find the equation of the normal at $t=2$.
(a) Evaluate $\int_{0}^{2} 3^{x} d x$ using Simpson's rule with 5 function values.

Answer correct to 2 decimal places.
(b) (i) Express $3 \cos 2 x-4 \sin 2 x$ in the form $\mathrm{R} \cos (2 x+\alpha)$.
(ii) Hence solve $6 \cos 2 x-8 \sin 2 x=2$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(c) From an external point two tangents are drawn to the parabola $y=x^{2}$. Find the co-ordinates of the external point if the equation of the chord of contact of the two tangents is $y=4 x+3$.
(a) The region bounded by $y=3, x=y^{2}$ and the y axis is rotated around the X axis.
(i) Sketch the region above on a number plane. 1
(ii) Find the exact volume of the solid of rotation.
(b) Prove that $\tan \frac{x}{2}=\frac{\sin x-\cos x+1}{\sin x+\cos x+1}$
(c) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$
(i) Show that $m_{P Q}=\frac{p+q}{2}$.
(ii) If $p q=-1$ show that $P Q$ is a focal chord.
(a) (i) Find the points of intersection of $y=x^{2}-3 x+1$ and $y=2 x-5$.
(ii) Find the area bounded by $y=x^{2}-3 x+1$ and $y=2 x-5$.
(b) Solve $3 \sin \theta+2 \cos \theta=1$ by using the t method for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(c) Find the equation of the locus of the midpoint of $P Q$ where P is the point $\left(2 a p, a p^{2}\right)$ and Q is the point $\left(6 a p, 9 a p^{2}\right)$ on the parabola $x^{2}=4 a y$.
(a) Find the area bounded by the curve $y=9 x-x^{3}$ and the x axis.
(b) Find the exact value of $\tan \frac{3 \pi}{8}$.
(c) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$.

The tangents at P and Q meet at R, and R lies on the parabola $x^{2}=-4 a y$. Show that $p^{2}+q^{2}+6 p q=0$.

Question 1 - Maths Ext 1 - Assessment Task 1 Year 12

(c.) Few students did not use correct addition of angles formula.
$\overline{Q_{2}}$
a) $\int_{1}^{2} f(x) d x=3 ; f(x)+f(-x)=0$

$$
\begin{aligned}
\int_{-2}^{-1} f(x) d x & =-\int_{-1}^{-2} f(x) d x \\
& =-\int_{1}^{2} f(-x) d x=-3(-x)
\end{aligned}
$$

Some students could not regconise this is an odd function.
b) $y=9-x^{2}$
x-intercepts: $(3-x)(3+x)=0$

$$
\begin{aligned}
& \vec{x}_{\pi}=2 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& A=2\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3} \\
& A=2\left[9 \times 3-\frac{3^{3}}{3}-0\right] \\
& A=36 \text { units }^{2}
\end{aligned}
$$

c)

$$
\sin x=\frac{7}{15}
$$

$$
\cos x=\frac{\sqrt{176}}{15}
$$

$$
\cos y=\frac{1}{\sqrt{3}}
$$

$$
\sin y=\frac{\sqrt{2}}{\sqrt{3}}
$$

$$
\begin{aligned}
\sin (x+y) & =\sin x \cdot \cos y+\cos x \sin y \\
& =\frac{7}{\sqrt{15}} \cdot \frac{1}{\sqrt{3}}+\frac{\sqrt{176}}{15} \cdot \frac{\sqrt{2}}{\sqrt{3}} \\
& =\frac{7+\sqrt{352}}{15 \sqrt{3}}=\frac{7 \sqrt{3}+4 \sqrt{66}}{45}
\end{aligned}
$$

* Some students could not find the ration $\cos x$ and sing, hence could not evaluate $\sin (x+y)$.
d) $A+A\left(8 t, 4 t^{2}\right)$
at $t=2 \quad \therefore \quad P(16,16)$

$$
t=-1 \therefore Q(-8,4)
$$

Eq of the chad $P Q y=\frac{1}{2} x+8$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad x-2 y+16=0 \\
& y-16\left.=\frac{4-16}{-8-16}(x-6)\right) \\
& x-2 y+16=0
\end{aligned}
$$

Ext 12015 Assessmat 1
Ba) i)

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & =2 \times 3 \\
& =6 \\
\text { ii) } \int_{3}^{5} f(x) & =-\frac{1}{2} \times 2 \times 3 \\
& =-3
\end{aligned}
$$

Many students calculated the the area instead of Evaluating the
Integral.
iii)

$$
\begin{aligned}
\int_{-2}^{6} f(x) d x & =\frac{1}{2} \times 2 \times 3+6+\frac{1}{2} \times 3 \times 1-3+\frac{1}{2} \times 3 \times 1 \\
& =9
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 2 \sin x \cos x-\sin x=0 \\
& \sin x(2 \cos x-1)=0 \\
& \sin x=0 \\
& x=0, \pi, 2 \pi \\
& \cos x=\frac{1}{2} \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3} \\
& \therefore x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi
\end{aligned}
$$

Some students didn't have all the solutions
C)

$$
\begin{aligned}
& t=2 \\
& \therefore x=12, y=12 \\
& m_{1}=2 \quad m_{2}=-\frac{1}{2} \\
& y-12=-\frac{1}{2}(x-12) \\
& 2 y-24=-x+12
\end{aligned}
$$

This question war dene well

$$
\begin{aligned}
& \therefore \\
& x+2 y-36=0
\end{aligned}
$$

Assement Task 1 Zols Ext 1.
Q4.
(a)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& \int_{0}^{1} 3^{x} d x+\int_{1}^{2} 3^{x} d x \\
= & \frac{1}{6}\left[3^{0}+4\left(3^{0.5}\right)+3^{1}\right]+\frac{1}{6}\left[3^{1}+4\left(3^{1.5}\right)+3^{2}\right] \\
= & \frac{1}{6}(4+4 \sqrt{3})+\frac{1}{6}(12+12 \sqrt{3}) \\
= & \frac{1}{6}(16+16 \sqrt{3}) \\
= & \frac{8}{3}+\frac{8 \sqrt{3}}{3} \approx 7.29
\end{aligned}
$$

If you can't remember Simpsois rule, it's on the reference sheet.
(b) (i) $R \cos (2 x+\alpha)=R \cos \alpha \cos 2 x-R \sin \alpha \sin 2 x$

$$
\begin{array}{cl}
& 3 \cos 2 x-4 \sin 2 x \\
R \sin \alpha=4 & \tan \alpha=\frac{4}{3} \\
R \cos \alpha=3 & \alpha=\tan ^{-1}\left(\frac{4}{3}\right) \\
R^{2} \sin ^{2} \alpha+R^{2} \cos ^{2} \alpha=16+4 & \approx 53^{\circ} 8^{\prime} \\
R=5 & \\
S \cos \left(2 x+53^{\circ} 8^{\prime}\right) &
\end{array}
$$

(ii)

$$
\begin{gathered}
6 \cos 2 x-8 \sin 2 x=2 \\
3 \cos 2 x-4 \sin 2 x=1 \\
5 \cos (2 x+\alpha)=1
\end{gathered}
$$

$$
\text { Let } \beta=\cos ^{-1}\left(\frac{1}{5}\right)
$$

$$
2 x+\alpha=\beta, 360^{\circ}-\beta, 360^{\circ}+\beta, 720^{\circ}-\beta .
$$

$$
2 x=\beta-\alpha, 360^{\circ}-\beta-\alpha, 360^{\circ}+\beta-\alpha, 720^{\circ}-\beta-\alpha
$$

$$
x=\frac{\beta-\alpha}{2}, \frac{360^{\circ}-\beta-\alpha}{2}, \frac{360^{\circ}+\beta-\alpha}{2}, \frac{720^{\circ}-\beta}{2}
$$

$$
=122^{\circ} 40^{\prime}, 114^{\circ} 12^{\prime}, 192^{\circ} 40^{\prime}, 294^{\circ} 12^{\prime}
$$

Some students only found souctions $0^{\circ} \leqslant x \leqslant 180^{\circ}$.
(c)

$$
\begin{aligned}
& y=x^{2} \\
& 4\left(\frac{1}{4}\right) y=x^{2} \\
& a=\frac{1}{4}
\end{aligned}
$$

hond of Contact y

$$
\begin{aligned}
& \text { of Contact } \\
& x_{0} x=2 a\left(y+y_{0}\right) \\
& x_{0} x=\frac{1}{2}\left(y+y_{0}\right)
\end{aligned}
$$

Given $\quad y=4 x+3$

$$
\begin{aligned}
& 4 x=y-3 \\
& 2 x=\frac{1}{2}(y-3)
\end{aligned}
$$

Ext. Point $\quad(2,-3)$.
Some student tried to solve the two equations simultaneously. White it is possible to do this queshom thatruay it proved to be too difficult.

Question 5 (8 Marks)
a) i)

ii)

$$
\begin{align*}
V & =\pi r^{2} h-\pi \int y^{2} d y \\
& =\pi \times 3^{2} \times 9-\pi \int_{0}^{9} x d x \\
& =81 \pi-\pi\left[\frac{x^{2}}{2}\right]_{0}^{9} \tag{2}\\
& =81 \pi-\frac{81 \pi}{2}
\end{align*}
$$

Many students could not work out the

$$
=40 \frac{1}{2} \pi \text { units }^{3}
$$ point of intersection which then determined the limits of integration

OR

$$
v=\pi \int\left[f(x)^{2}-g(x)^{2}\right] d x
$$

$$
=\pi \int_{0}^{9}\left[(3)^{2}-y^{2}\right] d x
$$

$$
=\pi \int_{0}^{9}(9-x) d x
$$

MOST students lost

$$
=\pi\left[9 x-\frac{x^{2}}{2}\right]_{0}^{9}
$$ a mark because of the incorrect method

of finding the volume

$$
=\pi\left[81-\frac{81}{2}\right]
$$ of the shaded region.

$$
=\frac{81}{2} \pi \text { units }^{3}
$$

b)

$$
\begin{aligned}
\text { RUS } & =\frac{\sin x-\cos x+1}{\sin x+\cos x+1} \\
& =\left(\frac{2 t}{1+t^{2}}-\frac{1-t^{2}}{1+t^{2}}+1\right) \div\left(\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}+1\right) \\
& =\left(\frac{2 t-1+t^{2}+1+t^{2}}{1+t^{2}}\right) \div\left(\frac{2 t+1-t^{2}+1+t^{2}}{1+t^{2}}\right) \\
& =\left(\frac{2 t^{2}+2 t}{1+t^{2}}\right) \times\left(\frac{1+t^{2}}{2 t+2}\right)
\end{aligned}
$$

(2)

$$
=\frac{2 t(t+1)}{2(t+1)}
$$

Many students could not complete this

$$
=t
$$ proof and lost one

$$
=\text { CHS } .
$$ mark.

OR. (A few students proved as follows):

$$
\begin{aligned}
\text { RUS } & =\frac{\sin x-\cos x+1}{\sin x+\cos x-1} \\
& =\frac{\sin x+(1-\cos x)}{\sin x+(-1+\cos x)} \\
& =\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}+2 \sin ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}+2 \cos ^{2} \frac{x}{2}} \\
& =\frac{2 \sin \frac{x}{2}\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)}{2 \cos \frac{x}{2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)} \\
& =\tan \frac{x}{2} \\
& =t=L H S .
\end{aligned}
$$

c)
i)

$$
\begin{align*}
m_{p_{Q}} & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q} \\
& =\frac{a(p-q)(p+q)}{2 x(p-q)} \tag{1}\\
& =\frac{p+q}{2}
\end{align*}
$$

ii) Equation of $P Q$:

$$
\begin{aligned}
y-a p^{2} & =\frac{p+q}{2}(x-2 a p) \\
2 y-2 a p^{2} & =p x-2 a p^{2}+q x-2 a p q \\
y & =\frac{(p+q)}{2} x-a p q
\end{aligned}
$$

step (1) If $p q=-1$
then: $y=\frac{(p+q)}{2} x+a$
step (2) Substitute focus $(0, a)$:

$$
\begin{aligned}
& \angle H S=y \quad \text { RHS }=\left(\frac{p+q}{2}\right) \times 0+a \\
&=a \quad=a \\
& \text { LHS }=\text { RHS }
\end{aligned}
$$

\therefore fours satisfies eqn of chord $P Q$
if $p q=-1$.

Students lost one mark if they showed step (2) before Step (1).

6(a) (i)

$$
\begin{aligned}
& x^{2}-3 x+1=2 x-5 \\
& x^{2}-5 x+6=0 \\
& (x-3)(x-2)=0 \\
& x=3,2
\end{aligned}
$$

when $x=3, y=2 \times 3-5$ When fringing faints

$$
=1
$$

1. $x=2, y=2 \times 2-5$ $=-1$
(ii)

$$
\begin{aligned}
& \int_{2}^{3} 2 x-5-\left(x^{2}-3 x+1\right) d x \\
= & \int_{2}^{3}\left(-x^{2}+5 x-6\right) d x \\
= & {\left[-\frac{x^{3}}{3}+\frac{5 x^{2}}{2}-6 x\right]_{2}^{3} } \\
= & -9+\frac{45}{2}-18+\frac{8}{3}+10+12 \\
= & \frac{1}{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 3 \times \frac{2 t}{12 t^{2}}+2 \times \frac{1-t^{2}}{12 t^{2}}=1 \\
& 6 t+2-2 t^{2}=1+t^{2} \\
& 0=3 t^{2}-6 t-1 \\
& t=\frac{6 \pm \sqrt{6^{2}-4 \times 3 \times-1}}{2 \times 3} \\
&=\frac{6 \pm \sqrt{48}}{6} \\
&=\frac{6 \pm 4 \sqrt{3}}{6} \\
&=\frac{3 \pm 2 \sqrt{3}}{3}
\end{aligned}
$$

$\tan \frac{\theta}{2}=65^{\circ}, 171^{\circ}$
$\frac{G}{2}$ has to be between 0° and 180°.

$$
\therefore G=130^{\circ}, 342^{\circ}
$$

(a)

$$
\begin{aligned}
x & =\frac{2 a_{p}+6 a p}{2} \\
& =4 a p \\
p & =\frac{x}{4 a}
\end{aligned}
$$

$$
\begin{aligned}
y & =a p^{2}+9 a p^{2} \\
& =\frac{10 a p^{2}}{2} \\
& =5 a p^{2}
\end{aligned}
$$

$$
=5 a \times\left(\frac{x}{4 a}\right)^{2} \text { There must be no " } f^{r \prime}
$$

$$
=\frac{5 x^{2}}{16 a} \quad \text { in the frimit answer. }
$$

Question 7
(a) $y=x\left(9-x^{2}\right)$

$$
\begin{aligned}
A & =2 \int_{0}^{3}\left(9 x-x^{3}\right) d x \\
& =2\left[\frac{9 x^{1}}{2}-\frac{x^{4}}{4}\right]_{0}^{3} \\
& =2\left(\frac{81}{2}-\frac{81}{4}-(0)\right) \\
\therefore A & =40.5 \text { units }^{2}
\end{aligned}
$$

This question was done well by most students. Some students did not grap or didn't identify the correct region of interest.
(b) Consider $t=\tan \frac{\theta}{2}$ where $\theta=\frac{3 \pi}{4}$

$$
\begin{aligned}
& \therefore t=\tan \frac{3 \pi}{8} \\
& \tan \theta=\frac{2 t}{1-t^{2}} \quad \therefore \tan \frac{3 \pi}{4}=\frac{2 t}{1-t^{2}} \\
& -1=\frac{2 t}{1-t^{2}} \quad \begin{array}{c}
\text { Many students failed to } \\
\text { make the connection to the } \\
t \text {-formula on this question. }
\end{array} \\
& -1+t^{2}=2 t \quad \\
& t^{2}-2 t-1=0 \\
& (t-1)^{2}=2
\end{aligned}
$$

(b) Continued

$$
\therefore t=1 \pm \sqrt{2}
$$

To get this question out fully, you need to identify that there-is-only one answer and eliminate the minus sign.
$\tan \frac{3 \pi}{8}>0 \quad\left(\frac{3 \pi}{8}\right.$ in quadrat 1$)$

$$
\therefore \tan \frac{3 \pi}{8}=1+\sqrt{2}
$$

(c) Tangent at $P\left(2 a p, a p^{2}\right)$

$$
\begin{aligned}
\quad & M_{T} \\
\therefore \quad & y-a p^{2}=p(x-2 a p) \\
& y
\end{aligned}=p x-a p^{2} .
$$

Tanget at Q : $\quad y=q x-a q^{2}$
R :

$$
\begin{aligned}
& p x-a p^{2}=q x-a q^{2} \\
& x(p-q)=a\left(p^{2}-q^{2}\right) \\
&=a(p-q)(p+q) \\
& \therefore x=a(p+q) \\
& y=p \times a(p+q)-a p^{2} \\
&=a p^{2}+a p q-a p^{2}=a p q
\end{aligned}
$$

$\therefore R$ is $(a(p+q), a p q)$
Finding the coordinates of R should have been fairly straight forward as a parametrics question though it seems that some students may have
struggled with time at the end of the paper.

Proving the required result was difficult for students.

