Sydney Girls High School

2016

YEAR 12 HSC ASSESSMENT TASK 1

MATHEMATICS EXTENSION 1

Time Allowed: 60 minutes + 5 minutes reading time

Topic: Parametrics, Trigonometry II and Integration

Total: 56 marks

General Instructions:

- There are Seven questions which are of equal value.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each Question on a new page.
- Write on one side of the paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Write your name clearly at the top of each question and clearly number each question.
- A reference sheet is provided with this paper.
\qquad
\qquad

Question One (8 marks)

a) Find
i) $\int\left(3 x^{3}-5\right) d x$
ii) $\quad \int \frac{4 x^{4}-5}{x^{2}} d x$
iii) $\int(7-2 x)^{9} d x$
b) If $\cos 2 x=\frac{1}{5}$, find the exact value of $\sin x$ (where x is acute).
(2)
c) Find the acute angle between the lines $3 x-y-2=0$ and $y=5-7 x$ to the nearest degree.

Question Two (8 marks)

a) Find $\int\left(3+2 x^{-2}\right)^{2} d x$.
b) Solve $4 \sin \theta \cos \theta=-1$ where $0 \leq \theta \leq 360^{\circ}$.
c) By eliminating t find the Cartesian equation for the following. Express the equation in a simplified form.

$$
\begin{equation*}
x=\frac{1}{t+1}, y=\frac{2 t}{t+1} \tag{3}
\end{equation*}
$$

Question Three (8 marks)

a) Evaluate $\int_{2}^{4} 2 x \sqrt[3]{x} d x$.
b) A chord of contact to the parabola $x^{2}=4 y$ has the equation $y=x+3$. Determine the external point from which the tangents are drawn.
c) If $\sec A=\sin B+\cos B$ show that $\tan ^{2} A=\sin 2 B$.

Question Four (8 marks)

a) Given $7 \cos x+24 \sin x=R \cos (x-\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$.
i) Find the value of R.
ii) Find the value of α correct to the nearest degree.
iii) Hence, solve $7 \cos x+24 \sin x=10$ for $0^{\circ} \leq x \leq 360^{\circ}$.
b) The points $A\left(6 p, 3 p^{2}\right)$ and $B\left(6 q, 3 q^{2}\right)$ lie on the parabola $x^{2}=12 y$.
i) Find the equation of chord $A B$.
ii) Write down the co-ordinates of M, the midpoint of $A B$.
iii) Find the equation of the locus of M, given $A B$ is a focal chord.
(2)

Question Five (8 marks)

a) $P\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$ with focus S . The tangent and normal at P meet the y-axis at T and N respectively.
i) State the equation of the tangent at P.
ii) State the equation of the normal at P.
iii) Show that P lies on a circle with diameter $T N$.
b) i) Sketch the graph of $y=2-|x|$.
ii) Hence find the value of $\int_{1}^{5} 2-|x| d x$.

Question Six (8 marks)

a) Use Simpson's rule to approximate the area of the ditch shown below correct to 2 decimal places

b) Solve $\sin x-2 \cos x=2$, using t formulas for $0 \leq x \leq 360^{\circ}$.
(where $t=\tan \frac{\theta}{2}$)
c) Find the area of the region bounded by the curve $y=(x-2)^{2}$, the line $y=2 x-1$ and the x-axis.

Question Seven (8 marks)

a) The area bounded by the curve $y=x^{2}+4$ and the line $y=8$, is rotated around the x-axis. Find the volume of the solid of revolution.
b) $T\left(2 t, t^{2}\right)$ is a point on the parabola $x^{2}=4 y$ with focus F. The tangent to the parabola at T makes an acute angle θ with line $F T$.

i) Find the gradient of the tangent at T.
ii) Find $\tan \theta$ in simplest form in terms of t.
c) Show that if $2 \cos \alpha=k+\frac{1}{k}$ then $2 \cos 3 \alpha=k^{3}+\frac{1}{k^{3}}$.
(You may use the identity $\cos 3 x=4 \cos ^{3} x-3 \cos x$.)

The End

