\qquad

SYDNEY TECHNICAL HIGH SCHOOL

Extension 1 Mathematics

HSC Assessment Task 1

Dec 2010

General Instructions

- Working time - 70 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Start each question on a new page.
- Place your papers in order with the question paper on top and staple or pin them.

Total Marks - 50

- Attempt Questions 1-6
- Mark values are shown with the questions.
(For markers use only)

Q1	Q2	Q3	Q4	Q5	Q6	Total
10	8	8	8	8	8	50

Question 1

a) The sum of the first two terms of a geometric progression is - 4 and the sum of the fourth and fifth terms is 108 . Calculate:
(i) the common ratio $\quad 2$
(ii) the seventh term.
b) For the geometric progression 3, 9, 27, ...
(i) Find the sum of n terms
(ii) Determine how many terms must be taken for the sum to exceed 10000 .
c) Prove that, if x is positive, the sum of
$1+\frac{x}{1+x}+\frac{x^{2}}{(1+x)^{2}}+\frac{x^{3}}{(1+x)^{3}}+\ldots$
never exceeds $1+x$.

Question 2
Marks
a) $A B$ is a diameter and $A C$ is a chord of a circle whose centre is O.
D is the midpoint of the $\operatorname{arc} B C$.
(i) Construct a diagram showing the above information.
(ii) Prove that $O D$ is parallel to $A C$.
b) Prove by mathematical induction that

$$
\sum_{r=1}^{n} r(r+1)=\frac{n(n+1)(n+2)}{3}
$$

a) Two circles intersect in X and Y and P is a point on one of them. $P X$ and $P Y$, when produced, meet the other circle in M and N respectively.
(i) Construct a diagram showing all relevant information. $\quad \mathbf{1}$
(ii) Prove that the tangent at P is parallel to $M N$.
b) Find, without deriving, the locus of a point $P(x, y)$ which moves so that its distance from the fixed point $(0,4)$ is always equal to its perpendicular distance from the fixed line $y=-4$.
c) Show that the equation of the chord joining the points where $x=x_{1}$ and $x=x_{2}$ on the parabola $x^{2}=y$ is

$$
y=x x_{1}+x x_{2}-x_{1} x_{2} .
$$

Question 4

A woman is considering borrowing $\$ 24000$ to finance renovations to her house.
The interest rate is 9% per annum compounded monthly on the balance owing.
a) If A_{n} represents the amount owing after n months and, using M to represent the monthly repayment, write an expression to show the amount owing after l month.
b) Write another expression showing the amount owing after 2 months.
c) Construct an expression to express the amount owing after n months.
d) Calculate the monthly instalment (to the nearest dollar) if the loan is to be repaid in 8 years.
e) What is the full amount of interest paid (to the nearest dollar)?
a) $\quad A B$ and $X Y$ are chords in a circle with centre $O . X Y$ cuts $A B$ in L, which is the midpoint of $A B . E$ is the midpoint of $X Y$.

Prove that $X Y$ is greater than $A B$.
[Hint: Construct $O L$ and $O E$. .]

b) In a proof by mathematical induction, it is assumed that $8^{k}-5^{k}$ is divisible by 3 for a positive integer value of k.
Using this assumption, show that this must also be true for $k+1$.
c) A circle is drawn with one of the equal sides of an isosceles triangle as diameter.

Show that the circle passes through the midpoint of the base of the isosceles triangle.

Question 6
Marks
a) On the parabola $x^{2}=4 a y$, the point P has coordinates $\left(2 a p, a p^{2}\right)$.

Show that the locus of the midpoints of chords $P O$ where O is the vertex is another parabola, $x^{2}=2 a y$.
b) Tangents are drawn to a parabola $x^{2}=4 y$ from an external point $A\left(x_{1}, y_{l}\right)$, touching the parabola at P and Q.
(i) Write the equation of the chord of contact.
(ii) Prove that the midpoint, M, of $P Q$ is the point $\left(x_{1}, \frac{1}{2} x_{1}^{2}-y_{1}\right)$.
(iii) If A moves along the straight line $y=x-1$, find the equation of the locus of M.

It SC Assessment One Extension $\quad 2010$
Q1 a) $\quad T_{1}+T_{2}=-4$

$$
\begin{equation*}
T_{4}+T_{5}=108 \tag{i}
\end{equation*}
$$

b) $3,9,27, \ldots$.

$$
\begin{equation*}
a=3, r=3 \tag{ii}
\end{equation*}
$$

(i)

From (i) $\quad a+a r=-4$
From (ii) $a r^{3}+a r^{4}=108$

$$
\begin{equation*}
\therefore a r^{3}(1+r)=108 \tag{iii}
\end{equation*}
$$

from(iii) $\quad a(1+r)=-4$
subinto(r) $\quad a r^{3}{ }_{k-\frac{4}{a_{3}}}=108$

$$
\begin{aligned}
\therefore \quad \overline{9}_{3} & =\frac{108}{-4} \\
& =-27
\end{aligned}
$$

(ii)

$$
\therefore r=-3
$$

subinto (iii)

$$
=-27
$$

(ii)
(i)

Now $\frac{3\left(3^{n}-1\right)}{2}>10000$

$$
\begin{aligned}
& 3\left(3^{n}-1\right)>20000 \\
& \therefore 3^{n}-1>\frac{20000}{3}
\end{aligned}
$$

$$
\therefore 3^{n+1}-3>20000
$$

$$
\therefore 3^{n+1}>20003
$$

$$
\therefore \log \left(3^{n+1}\right)>\log 20003
$$

$$
\therefore(n+1) \log 3^{\prime}>\log 20003
$$

$$
\therefore n+1>\frac{\log 20003}{\log 3}
$$

$$
\approx 9.01467 \ldots
$$

$$
\therefore n,>8.01467
$$

So $n=9$ for $S_{n}>10000$
c) $1+\frac{x}{1+x}+\frac{x^{2}}{(1+x)^{2}}+\cdots$

Gif where $a=1, r=\frac{x}{1+x}$
If $x>0$, then $0<\frac{x}{1+x}<1$

$$
\therefore|r|<1
$$

$\therefore S_{\infty}$ exist.

$$
\begin{aligned}
\therefore \quad S_{\infty} & =\frac{a}{1-r} \\
& =\frac{1}{1-\frac{x}{1+x}} \\
& =\frac{1}{\frac{1+x-x}{1+x}} \\
& =1+x
\end{aligned}
$$

QED
(i.)

Let $B \hat{O C}=\theta$
$Q 2$

Now, $\angle \hat{O} B=2 \theta$ (Angleaterentre is twice at centre is
twits that at circumference)
$\hat{C O D}=\hat{B O D}$ (angles on equal arcs)
$\therefore B O D=\theta$
$\therefore A C \| O D$ (corresponding angles)
b) RTS $\sum_{r=1}^{n} r(n+1)=\frac{n(n+1)(n+2)}{3}$
ie $n \cdot 2+2.3+\ldots n(n+1)=\frac{n(n+1)(n+2)}{3}$
(i) For $n=1, \quad$ Lit $=1.2$

$$
=2
$$

$$
\text { R1+5 }=\frac{1 \times 2 \times 3}{3}
$$

$$
22
$$

$$
\therefore \angle 1+S=R 1+5
$$

\therefore tree for $n=1$.
(ii) Aosceme these for $n=k$

$$
\therefore 1.2+2.3+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}
$$

For $n=1 人+1$,

$$
\begin{aligned}
R H S & =\frac{(k+1)(k+2)(k+3)}{3} \\
2 H 5 & =1.2+2 \cdot 3+\cdots+k(k+1)+(k+1)(k+2) \\
& =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =\frac{k(k+1)(k+2)}{3}+\frac{3(k+1)(k+2)}{3} \\
& =\frac{(k+1)(k+2)(k+3)}{3}
\end{aligned}
$$

$$
=R H S
$$

\therefore if the for $n=k$, item true for $n=k+1$
(iii) If trues for $n=k=1$, then true for $x=k+1=$ If true for $n=k=2$, then trues of $n=k+1=3$ ste.
\therefore time for all positive integral values of n.

$$
\begin{aligned}
& a-3 a=-4 \\
& \therefore-2 a=-4 \\
& \therefore a=2 \\
& \therefore T_{7}=2 \times(-3)^{0} \\
& =1458
\end{aligned}
$$

Wet tanger at P be $A B$.
het $\theta=\hat{A P} \Pi$ Now, $\beta \hat{y} x=\theta$ (angle in atternate segment
$\therefore x \hat{Y}_{N}=180-\theta \quad$ (supplementang angle
$\therefore x \hat{T} N=\theta$ (opposite angles in eytio
$\therefore \times \hat{T} N=\theta$ (opposite angles in eytire
(2) $\begin{aligned} P=\$ 24000 \quad & =0.09 \% \mathrm{fa} \\ & =0.0075 \% \mathrm{~mm}\end{aligned}$
a) $A_{1}=24000 \times 1.0075-M$
b) $A_{2}=(24000 \times 1.0075-7) \times 1.0075-7$
$=24000 \times 1.0075^{2}-\pi(1+1.0075)$
c) $A_{11}=24000 \times 1.0075^{2}-17\left(1+1.0075+10075^{2}+\cdots+1.0075^{1-1}\right)$
$\therefore A B \| M N$ (quadritateral are sypplementar a ternate emgles are equal),

Locus of P in a pandola, vertes $(0,0)$
with foccal bungth, 4 .
d) $A_{96}=24000 \times 1.0075^{96}-7\left(1 \frac{\left(1.0075^{96}-1\right)}{1.0075-1}\right.$

$$
=24000 \times 1.0075^{4 t}-17 \times 139.8562
$$

$$
\begin{aligned}
& \therefore x^{2}=4 \times 4 \times y \\
& \therefore x^{2}=16 y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y-x_{1}^{2}}{x-x_{1}}=\frac{x_{2}^{2}-x_{1}^{2}}{x_{2}-x_{1}} \\
\therefore & \left(y-x_{1}^{2}\right)\left(x_{2}-x_{1}\right)=\left(x_{2}^{2}-x_{1}^{2}\right)\left(x-x_{1}\right) \\
\therefore & y x_{2}-x_{1} y-x_{1}^{2} x_{2}+x_{1}^{3}=x_{1}^{2} x-x_{2}^{2} x_{1}-x_{1}^{2} x+x_{1}^{3}
\end{aligned}
$$

$$
\therefore y\left(x_{2}-x_{1}\right)=x_{1}^{2} x_{2}-x_{2}^{2} x_{1}+x x_{2}^{2}-x x_{1}^{2}
$$

$$
\begin{aligned}
& =x_{1} x_{2}\left(x_{1}-x_{2}\right)+x_{(}\left(x_{2}^{2}-x_{1}^{2}\right) \\
& =x_{1} x_{2}\left(x_{1}-x_{2}\right)+x\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1} x_{2}\left(x_{1}-x_{2}+x\left(x_{2}\right)\right)\left(x_{2}+x_{1}\right) \\
& =-x_{1} x_{2}\left(x_{2}-x_{1}\right)+x\left(x_{2}+x_{1}\right)\left(x_{2}-x_{1} .\right.
\end{aligned}
$$

$$
\begin{aligned}
\therefore y & =-x_{1} x_{2}+x\left(x_{2}+x_{1}\right) \\
& =-x_{1} x_{2}+x x_{2}+x x_{1} \\
\therefore y & =x x_{1}+x x_{2}-x_{1} x_{2}
\end{aligned}
$$

on line $\begin{aligned} & y=9 \\ & x=x_{1}\end{aligned}$
Now $y_{1}=x_{1}-1$
For $M, y=\frac{x_{1}^{2}}{2}-(x,-1)$

$$
\therefore \quad y=\frac{x_{1}^{2}-2 x_{1}+2}{2}
$$

Also $P=n, x=x$,

$$
\begin{aligned}
\therefore y & =\frac{x^{2}-2 x+2}{2} \\
\therefore 2 y & =x^{2}-2 x+2 \\
& =(x-1)^{2}+1 \\
\therefore(x-1)^{2} & =2 y-1 \\
& =2\left(y-\frac{1}{2}\right)
\end{aligned}
$$

b) Assume -5^{k}

$$
\therefore 8^{k}-5^{k}=3 M, M \in \mathbb{M}
$$

For $n=k+1$,

$$
\begin{aligned}
&n=k+1) \\
& 8^{k+1}-5^{k+1}= 8 \times 8^{k}-5 \times 5^{k} \\
&= 5\left(8^{k}-5^{k}\right)+3 \times 8^{k} \\
&= \sqrt{5} \times 3 / 7+3 \cdot 8^{k} \\
&= 3\left(57+8^{k}\right) \text { where } \\
& 57+8^{k} \in N
\end{aligned}
$$

\therefore eft trace for k, then trace for $k+1$. QED

Construing $A D$
$\therefore A \overline{A B}=90^{\circ}$ (aver le in semetircte is 90°)
$\therefore B \vec{D}=90^{\circ}$ (supplementing, angles)
$\hat{A} C=A \overrightarrow{C D}$ (base angles of isixales Δ)
PD in common to $\triangle S$. ABD and $A D$.

$$
\begin{aligned}
& \because \triangle A B D \equiv \triangle A C D(A A S) \\
& \therefore C D=D B \text { (commanding sides in) }
\end{aligned}
$$

Qt

Construct OL and OE.
L in midpoint of $A B$ (given)
$\therefore 0 L \therefore$ prparccicula distmese from 0 (propiondiuch from micporif perse
$E=$ midpoint $x y$ (given)
$\therefore L E O=90^{\circ}$ (line fan o to midpoint west chow at got
Now $L O>E O$ (hypritament is $l=g$)entrain $\therefore x Y>A B$ (Conger chord is closerto coste)
b)

$$
0 \Rightarrow(0,0) \quad p \Rightarrow\left(2 a, a p^{2}\right)
$$

$$
\therefore M=\left(a p, \frac{a p^{2}}{2}\right)
$$

$$
\therefore x=a p \quad \text { and } y=\frac{a p^{2}}{2}
$$

$$
\therefore p=\frac{x}{a}
$$

$$
\therefore y=\frac{a}{2}\left(\frac{x}{a}\right)^{2}
$$

$$
=\frac{x^{2}}{2 a}
$$

$$
\therefore \quad x^{2}=2 a y
$$

$Q \in D$
(i) chord of contact $\Rightarrow \begin{aligned} x x_{1} & =2 a\left(y+y_{1}\right) \\ x x_{1} & =2\left(y+y_{1}\right)\end{aligned}$
(ii)

$$
\begin{align*}
& x^{2}=4 x y \quad-\text { (ii) } \quad a=1 \tag{i}\\
& \therefore y=\frac{x^{2}}{4}
\end{align*}
$$

subito (1) $x x_{1}=2\left(\frac{x^{2}}{4}+y_{1}\right)$

$$
\begin{aligned}
\therefore x_{1}^{2} & =2\left(y-y_{1}\right) \\
& =2 y+2 y_{1} \\
\therefore 2 y & =x_{1}^{2}-2 y_{1} \\
\therefore y & =\frac{x_{1}^{2}}{2}-y_{1}
\end{aligned}
$$

Q6b(ii) in previous page
$\therefore x$ value of $\pi=x_{1}$ (bysymmety)

$$
=\frac{x^{2}}{2}+2 y_{1}
$$

$$
\begin{aligned}
& \therefore x^{2}-2 x x_{1}+4 y_{1}=0 \\
& \therefore x=\frac{2 x_{1} \pm \sqrt{4 x_{1}^{2}-4 x^{4} y_{2}}}{2} \\
&=2 x_{1} \pm 2 \sqrt{x_{1}^{2}-4 y_{1}} \\
& 2
\end{aligned}
$$

$$
\therefore M \Rightarrow\left(x_{1}^{2} \frac{x_{1}^{2}}{2}-y_{1}\right)
$$

$Q E D$

