

2017

HSC Assessment Task 1

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 50 minutes
- · Write using black pen
- NESA approved calculators may be used
- In Questions 6 8, show relevant mathematical reasoning and/or calculations.

Total marks: 39

Section I – 5 marks (pages 2 - 3)

- Attempt Questions 1 − 5
- Allow about 10 minutes for this section

Section II – 34 marks (pages 4 - 6)

- Attempt Questions 6 8
- · Allow about 40 minutes for this section

Section I

5 marks

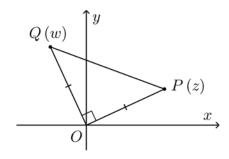
Attempt Questions 1-5

Allow about 10 minutes for this section

Use the multiple-choice answer page in the writing booklet for Questions 1-5.

- What is the value of i^{2017} ? 1
 - (A) *i*
- (B) -i
- (C) 1
- (D) -1

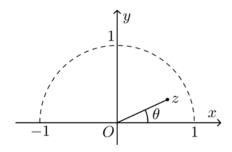
- 2 Given z = 3 - i, $\overline{iz} =$
 - (A) -1+3i
- (B) -1-3i (C) 1+3i
- (D) 1-3i
- On the diagram below, P and Q represent complex numbers z and w respectively. 3 Triangle *OPQ* is isosceles and right-angled at the origin.



Which of the following statements is **incorrect**?

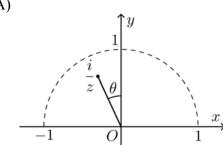
- (A) $|z|^2 + |w|^2 = |z + w|^2$
- (B) $z^2 + w^2 = 0$
- (C) $z^2 w^2 = 0$
- (D) w = iz

- 4 Which of the following statements is **incorrect**?
 - (A) $z\overline{z}$ is purely real, where z is a complex number.
 - (B) $z + \overline{z}$ is purely real, where z is a complex number.
 - (C) iz is purely real, where z is a purely imaginary number.
 - (D) $\frac{1}{z}$ is purely real, where z is a purely imaginary number.
- 5 The Argand diagram below shows the complex number z.

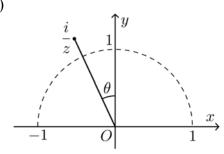


Which of the following diagram best represents $\frac{i}{z}$?

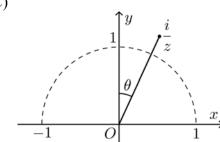
(A)



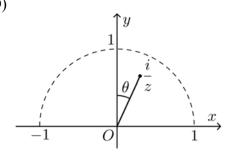
(B)



(C)



(D)



End of Section I

Section II

34 marks

Attempt Questions 6 – 8

Allow about 40 minutes for this section

Answer each question in the appropriate section of the writing booklet. Extra writing paper is available.

In Questions 6 - 8, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (11 marks) Use the Question 6 section of the writing booklet.

(a) Given z = 7 + 4i and w = 3 - 2i. Express each of the following in x + yi form, where x and y are real numbers.

(i)
$$\overline{z} - w$$

(ii)
$$\frac{zw}{2}$$

(iii)
$$\frac{z}{w}$$

- (b) On an Argand diagram, sketch the locus of the point z such that |z+1| = |z-2i|.
- (c) (i) Shade in the region on the Argand diagram where the following inequalities both hold.

$$1 \le \operatorname{Im}(z) \le 4$$
 and $\frac{\pi}{4} \le \operatorname{arg}(z) \le \frac{\pi}{3}$

- (ii) Let ω be the complex number of maximum modulus satisfying the above inequalities. Express ω in the form x + yi, where x and y are real number.
- (d) Find, in modulus-argument form, all solutions of $z^3 + i = 0$.

End of Question 6

Question 7 (12 marks) Use the Question 7 section of the writing booklet.

- (a) (i) Find all pairs of integers x and y such that $(x + yi)^2 = 7 + 24i$.
 - (ii) Hence, or otherwise, find all the solutions to the following quadratic equation:

$$z^2 + 3iz - (4+6i) = 0.$$

- (b) (i) Express $z = \frac{1+\sqrt{3}i}{1+i}$ in modulus-argument form.
 - (ii) Hence, find the smallest positive integer n such that z^n is a real number. 2
- (c) (i) On the Argand diagram, sketch the locus of a point z such that:

$$\arg\left(\frac{z-2\sqrt{3}}{z}\right) = \frac{2\pi}{3}$$

2

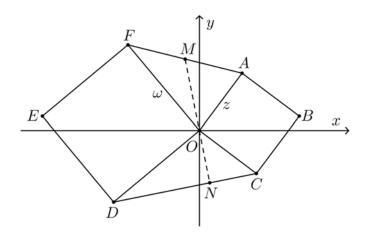
(ii) Hence, find the Cartesian equation of the locus, stating any restrictions.

End of Question 7

Question 8 (11 marks) Use the Question 8 section of the writing booklet.

(a) If
$$\omega$$
 is a non-real cube root of unity, evaluate $(1-3\omega+\omega^2)(1+\omega-8\omega^2)$.

- (b) (i) By expanding $(\cos \theta + i \sin \theta)^3$ and using de Moivre's theorem, find expressions for $\sin 3\theta$ and $\cos 3\theta$.
 - (ii) Hence show that $\tan 3\theta = \frac{3 \tan \theta \tan^3 \theta}{1 3 \tan^2 \theta}$.
- (c) In the following diagram, OABC and ODEF are squares. \overrightarrow{OA} and \overrightarrow{OF} represent the complex numbers z and ω respectively. M is the midpoint on the interval FA. MO produced meets DC at N.



- (i) Show that $\overrightarrow{OM} = \frac{z + \omega}{2}$.
- (ii) Express \overrightarrow{CD} in terms of z and ω .
- (iii) Hence, or otherwise, justify why $NM \perp CD$.
- (d) It is known that $\omega = \frac{az+b}{bz+a}$, where a and b are non-zero real numbers. 2

 Given |z|=1, show that $|\omega|=1$.

End of Paper