

GIRRAWEEN HIGH SCHOOL MATHEMATICS EXTENSION 2

TASK 1 2017 December 2016: COMPLEX NUMBERS ANSWERS COVER SHEET

Name:	
	FINAL
	MARK
Teacher:	
reaction.	

	MARK	E2	E3	E4	E5	E 6	E7	E8
1 -5 Multiple Choice	/5	√	√					√
6	/21		√					√
7	/14		√					√
8	/13							√
9	/16	√						√
10	/13							√
11	/13							√
TOTAL	/95	/95	/95					/95

HSC Outcomes Mathematics Extension 2

- E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings.
- E3 uses the relationship between algebraic and geometric representations of complex numbers and of conic sections.
- E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials.
- E5 uses ideas and techniques from calculus to solve problems in mechanics involving resolution of forces, resisted motion and circular motion
- E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions.
- E7 uses the techniques of slicing and cylindrical shells to determine volumes.
- E8 applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems.
- E9 communicates abstract ideas and relationships using appropriate notation and logical argument.

GIRRAWEEN HIGH SCHOOL

TASK 1 2017 (December 2016)

MATHEMATICS

EXTENSION 2

Complex Numbers

Time allowed – 100 Minutes

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- · All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board-approved calculators may be used.
- Each question attempted is to be marked clearly Question 1, Question 2 etc. Each question is to be returned on a separate page in your answer booklet.
- · You may ask for spare answer booklets if you need them.
- For Multiple choice: Fill in the circle corresponding to the correct answer on the multiple choice answer sheet in your answer booklet.

Questions 1-5 (Multiple Choice) Circle the correct answer on the Examination Paper

- (1) The value of i^{-6} is:
- (A) *i*
- (B) -i
- (C) 1
- (D)-1

- (2) 1If z = 4 + 3i and w = 2 i then $\bar{z}w =$
- (A)11 2i
- (B) 5 + 10i
- (C) 5 10i
- (D) 11 + 2i
- (3) When expressed in modulus/ argument form, $\sqrt{3} 3i =$

- (A) $2\sqrt{3}(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ (B) $2\sqrt{3}(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3})$ (C) $2\sqrt{3}(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$
- (D) $2\sqrt{3}(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3})$
- (4) In Cartesian form, $\frac{6+8i}{4-3i} =$
- (A)2i
- (B) -2i
- (C) $\frac{48+14i}{25}$ (D) $\frac{28+96i}{25}$
- (5) The region drawn in the complex plane below is::
- (A) $|z| \le 2$ and Re(z) < 1
- (B) $|z| \le 2$ and Im(z) < 1
- (C) $|z-2| \le 2$ and Re(z) < 1 (D) $|z-2| \le 2$ and Im(z) < 1

Examination continues on the following page

For Question 6 onward show all workings on the blank paper provided:

Qι	estion	6 (21 Marks)	Marks
(a) (i) Find $\frac{-1+i}{\sqrt{3}-i}$ in Cartesian form.		2	
	(ii)	Convert both $-1 + i$ and $\sqrt{3} - i$ to Modulus/argument form.	4
	(iii)	Using the answers to (i) and (ii) find the exact value of $\cos \frac{11\pi}{12}$.	2
(b) (i) If $x + iy = \sqrt{12 + 16i}$ find the exact value of x and y.			
	(ii) He	ence solve the equation $z^{2} + (2 + 6i)z + (-11 + 2i) = 0$	3
(c) Use DeMoivre's theorem to find $(-1 + i\sqrt{3})^{11}$ in Cartesian form.		3	
(d) Find all three cube roots of $4\sqrt{2} + 4i\sqrt{2}$. Leave your answers in		2	
	modu	lus/ argument form.	
Qu	estion	7 (14 Marks)	
	(a) Sk	etch each of the following loci on separate Argand diagrams:	
	(i)	z+2-i =2	2
	(ii)	$Arg(z-i) = \frac{2\pi}{3}$	2
	(iii)	z - 2 + i = z + 4 - 5i	2
	(iv)	$\left \frac{z+5+6i}{z-4-6i} \right = 2$	3
(b)	Sketch	and shade the region satisfied by $ z - 2i \le 3$ and	5
$\frac{\pi}{2}$:	≤ Arg	$(z+i) < \frac{3\pi}{4}$ on an Argand diagram.	

Examination continues on the following page

(a) z and w are arbritrary points on the Argand diagram such that $\overrightarrow{OA} = z$ and $\overrightarrow{OB} = w$. (see diagram below). Copy the diagram on to your answer paper and draw in:

(i) \overrightarrow{OC} so that $\overrightarrow{OC} = z + w$	1
---	---

(ii)
$$\overrightarrow{OD}$$
 so that $\overrightarrow{OD} = z - w$

(iii)
$$\overrightarrow{OE}$$
 so that $\overrightarrow{OE} = iw$

(iv)
$$\overrightarrow{OF}$$
 so that $\overrightarrow{OF} = w \times (\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$

Examination continues on the following page

Question 8 (continued)

Marks

(b) In the Argand diagram below, $\overrightarrow{OA} = z_1$, $\overrightarrow{OB} = z_2$ and $\overrightarrow{OC} = z_3$. DA and BD are straight lines through O and C respectively and AB is a tangent to the circle ACD with centre O.

(i) Write \overrightarrow{OD} in terms of z_1 .

1

(ii) State why $\frac{z_2-z_1}{z_1}$ is entirely imaginary.

2

(iii) Prove
$$Arg\left(\frac{z_3-z_1}{z_2-z_1}\right) = Arg\left(\frac{z_1+z_2}{z_1}\right)$$

3

(iv) Prove
$$|z_2 - z_1|^2 = |(z_2 + z_1)(z_3 - z_2)|$$

3

Examination continues on the following page

Question 9(16 Marks)

- (a) The graph of $Arg\left(\frac{z-5}{z+3}\right) = \frac{\pi}{4}$ represents part of a circle. Draw this circle part and find its centre, radius and equation.
- (b)(i) If $z = cos\theta + isin\theta$, prove that $z^n + \frac{1}{z^n} = 2 cos n\theta$ and 5

$$z^n - \frac{1}{z^n} = 2i\sin n\theta.$$

- (ii) Hence express $sin^8\theta$ in terms of $cos 8\theta$, $cos 6\theta$, $cos 4\theta$ and $cos 2\theta$.
- (iii) Hence find the exact value of $\sin \frac{\pi}{8}$. (Leave your answer as an δ^{th} root.) 3

Question 10 (13 Marks)

- (a) Bu using DeMoivre's Theorem and the expansion of $(\cos\theta + i\sin\theta)^6$, find 3 formulas for $\sin 6\theta$ and $\cos 6\theta$. (You may leave your answers in terms of both $\sin \theta$ and $\cos \theta$).
- (b) Hence find the formula for $\cot 6\theta$ in terms of $\cot \theta$.
- (c) Hence show that $\cot \frac{\pi}{12}$ is a root of the equation $z^4 14z^2 + 1 = 0$ and find the exact value of $\tan \frac{\pi}{12}$.

Question 11 (13 Marks)

- (a)(i) If w is the complex root of $z^5 1 = 0$ with the smallest positive argument, show that w^2 , w^3 and w^4 are also roots of $z^5 1 = 0$.
- (ii) Show that $w + w^2 + w^3 + w^4 = -1$.
- (b)(i) By matching pairs of conjugate roots, resolve $z^5 1$ into real linear and quadratic factors (you may use your answer to (a) here).
- (ii) Hence resolve $z^4 + z^3 + z^2 + z + 1$ into real quadratic factors.
- (iii) Hence show that

$$2\cos 2\theta + 2\cos \theta + 1 = (2\cos \theta - 2\cos \frac{2\pi}{5})(2\cos \theta + 2\cos \frac{\pi}{5})$$

(iv) Hence by substituting in an appropriate value for θ show that

$$(1 - 2\cos\frac{2\pi}{5})(1 + 2\cos\frac{\pi}{5}) = 1$$

End of examination