HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS – EXTENSION TWO

2005 HSC

ASSESSMENT TASK 1

Examiners ~ G Rawson, J Dillon GENERAL INSTRUCTIONS

- Reading Time 3 minutes.
- Working Time 40 MINUTES.
- Attempt **all** questions.
- All necessary working should be shown in every question.
- This paper contains two (2) questions.

- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started on a new piece of paper.
- This examination paper must **NOT** be removed from the examination room.

STUDENT NAME:	
TEACHER:	

QUESTION ONE 20 marks Start a SEPARATE sheet

- (a) If z = 3 i and w = 1 + 3i, find
 - (i) z + w
 - $\begin{array}{ccc}
 \text{(ii)} & z w \\
 \text{(iii)} & zw
 \end{array}$
 - $\begin{array}{ccc} \overline{(iv)} & z\overline{w} \\ \end{array}$
 - (v) $\frac{z}{w}$ 2
- (b) (i) Show that $(1-2i)^2 = -3-4i$
 - (ii) Hence, or otherwise, solve the equation $z^2 5z + (7 + i) = 0$
- (c) (i) Find the modulus and argument of $5+5\sqrt{3}i$
 - (ii) Hence, or otherwise, find the two square roots of $5+5\sqrt{3}i$
- $\begin{array}{c|c}
 Im(z) & C \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

The diagram above shows the fixed points A, B and C in the Argand plane, where AB = BC, $\angle ABC = \frac{\pi}{2}$, and A, B and C are in anticlockwise order. The point A represents the complex number $z_1 = 2$ and the point B represents the complex number $z_2 = 3 + \sqrt{5}i$.

- (i) Find the complex number z_3 represented by the point C.
- (ii) D is the point on the Argand plane such that ABCD is a square. Find the complex number z_4 represented by D.

QUESTION TWO 20 marks Start a SEPARATE sheet

- (a) Given $z = \sqrt{6} \sqrt{2} i$, find
 - (i) $Re(z^2)$ (ii) |z|(iii) arg z(iv) z^4 in the form x + iy
- (b) Find and plot on the Complex Plane, the values of z for which $z^3 8i = 0$
- (c) Sketch the locus of z satisfying:
 - (i) $\arg(z-4) = \frac{3\pi}{4}$ (ii) $\operatorname{Im} z = |z|$ 2
- (d) The equations $|z-8-6i| = 2\sqrt{10}$ and $\arg z = \tan^{-1} 2$ both represent loci on the Argand plane.
 - (i) Write down the Cartesian equations of the loci, and hence show that the points of intersection of the loci are 2 + 4i and 6 + 12i.
 - (ii) Sketch both loci on the same diagram, showing their points of intersection.(You need not show the intercepts with the axes.)