JAMES RUSE AGRICULTURAL HIGH SCHOOL

Year 11 MATHEMATICS EXTENSION 2

TERM 4 - 2000

Instructions:

Time allowed: 85 minutes
Attempt all questions
Marks may not be awarded for poorly arranged work
Show all working
Approved silent calculators may be used
Return your answers in 3 separate bundles

SECTION A (START A NEW PAGE)

Question 1:

Given z = 4 - 3i, write down the values of

(i) -z (ii) \overline{z} (iii) z^2 (iv) $\frac{1}{z}$

Question 2:

On the Argand diagram provided, the points A and B represent the complex numbers α and β . The points P, Q, R and S represent the complex numbers $-\beta$, $2i\beta$, $\alpha + \beta$ and $\alpha - \beta$ respectively. Use compasses, protractor and rule to show the positions of points P, Q, R and S. Show all construction lines and relevant angles.

Question 3:

The number z has modulus $\sqrt{2}$ and argument $\frac{3\pi}{5}$ and w = 2 + 2i. Express the following in mod/arg form.

(i) w (ii) wz (iii) $\frac{w}{z}$ (iv) z^4

Question 4:

If $z = \cos \theta + i \sin \theta$

(i) write z^2 in mod/arg form

(ii) prove that $\frac{2}{1+z^2} = 1 - i \tan \theta$, $(z \neq i)$

SECTION B (START A NEW PAGE)

Question 1:

Given $z_1 = r_1(\cos\theta + i\sin\theta)$ and $z_2 = r_2(\cos\phi + i\sin\phi)$ prove that

(i)
$$|z_1 z_2| = |z_1| |z_2|$$

(ii)
$$arg(z_1z_2) = arg(z_1) + arg(z_2)$$

Question 2:

- (i) Express both complex roots of $z^2 = -3 + 4i$ in the form a + ib where a and b are real.
- (ii) Hence solve $z^2 (4 2i)z + (6 8i) = 0$ expressing your answer in the form p + iq where p and q are real.

Question 3:

- (i) Describe algebraically and sketch the locus defined by $arg(z-2+i) = -\frac{\pi}{4}$.
- (ii) Describe algebraically and sketch the locus defined by $\operatorname{Im}\left(z + \frac{1}{z}\right) = 0$.
- (iii) Shade the region defined by $|z| \le 2$ and $0 \le \arg z \le \frac{\pi}{3}$.

SECTION C (START A NEW PAGE)

Question 1:

- (i) Describe algebraically the loci of the complex number w and z if |z i| = 3 and |w + 1 i| = |w 7 7i|.
- (ii) Sketch both loci on the same set of axes.
- (iii) Hence find the least value of |w-z|.

Question 2:

- (i) Show on an Argand diagram the points A, B and P representing the complex numbers z, w and z + w respectively. (Assume that $0 < \arg(w) < \arg(z) < \frac{\pi}{2}$)
- (ii) Given that O is the origin and |z| = |w|, what type of quadrilateral is OAPB? (Give a reason)
- (iii) With the aid of the above diagram find $\arg\left(\frac{z+w}{z-w}\right)$. (Give a reason)

Question 3:

Given that w is a complex root of unity,

- (i) Prove that $1 + w + w^2 = 0$.
- (ii) Prove that $1 + w^2 = \frac{1}{1 + w}$.
- (iii) Prove that 1+w is a complex cubic root of -1.
- (iv) Express the other complex cubic root of -1 as a quadratic expression in w.

END of EXAMINATION PAPER

Question 4:

(i) Express $-4 + 4i\sqrt{3}$ in mod/arg form.

(ii) Hence find the three complex roots of $z^3 = -4 + 4i\sqrt{3}$. Leave your answer in mod/arg form.

(iii) Show the three roots on an Argand diagram.

Question 2:

If
$$|z| = 1$$
, prove that $\frac{1+z}{1+\overline{z}} = z$.

Question 5:

If
$$z = \cos \theta + i \sin \theta$$

(iii) write z^2 in mod/arg form

(iv) prove that $\frac{2}{1+z^2} = 1 - i \tan \theta$.