JAMES RUSE AGRICULTURAL HIGH SCHOOL YEAR 11 MATHEMATICS EXTENSION 2 ASSESSMENT TASK 1, TERM 4 2003

Time allowed: 85 minutes + 5 minutes (reading time) **Instructions**:

- · Approved calculators may be used.
- · All questions may be attempted.
- · All questions are of equal value.
- · In every question, show all working
- · Marks may not be awarded for careless or badly arranged setting out.
- · Start a new page for each NEW question.
- Return Question 1, 2, 3 & 4 as separate bundles, showing your candidate number clearly in top right hand corner.

Question 1. Marks

(a) Let z = 3 - 4i and w = 2 + 5i. Express each of the following in the form a + ib, where a and b are real numbers.

(i)
$$w-z$$
.

(ii)
$$z^2$$
. 2

(iii)
$$\frac{z}{w}$$
.

- (b) Find a and b, where a and b are real numbers if $(a+ib)^2 = 21-20i$. 3
- (c) Let $z = 3(\cos\theta + i\sin\theta)$.

(i) Find
$$\overline{1-z}$$
.

(ii) Show that the real part of
$$\frac{1}{1-z}$$
 is $\frac{1-3\cos\theta}{10-6\cos\theta}$.

(iii) Express the imaginary part of
$$\frac{1}{1-z}$$
 in terms of θ .

(d) Given $\psi = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$, calculate

(i)
$$|\psi|$$
.

(ii)
$$Arg(\psi)$$
.

(iii)
$$\psi^{-10}$$
.

Question 2. [START A NEW PAGE]

Marks

- (a) If $z_1 = 2i$ and $z_2 = 1 + 3i$ are two complex numbers, describe the loci of z such that: $z = z_1 + k(z_2 z_1)$, when
 - (i) k = 0 and k = 1.
 - (ii) 0 < k < 1.
 - (iii) k is any real number.
- (b) Sketch the region for z in the Argand plane defined by: 3

$$|z-1+i| < 2 \text{ and } -\frac{\pi}{4} \le \arg(z-1+i) \le \frac{5\pi}{4}.$$

- (c) Find the locus of z when
 - (i) |z-4i| = |z-6-2i|.
 - (ii) $\arg(z^2) = \frac{\pi}{2}$.
 - (iii) $\text{Re}(z \frac{9}{z}) = 0.$
- (d) Find the new complex number when the complex number 3+i 2 is rotated 45^0 anticlockwise about the origin in the Argand plane.
- (e) Evaluate: i^{2003} . 1

Question 3. [START A NEW PAGE]

Marks

- (a) (i) Define the argument of complex number z, that is arg(z). 1
 - (ii) If z is a complex number such that 4

Prove that $\arg(z^2 - a) = \theta + \frac{\pi}{2}$.

(b) The diagram shows a parallelogram OPAW in the Argand plane. The diagonals intersect with an angle of θ as shown.

Let z, α and w be the complex numbers represented by the points P, A and W respectively, where z, α and $w \neq 0$.

- (i) Given that $2 \operatorname{Re}(\varphi) = \varphi + \overline{\varphi}$, where φ is a complex number, hence, or otherwise show that $2 \operatorname{Re}(w\overline{z}) = w\overline{z} + \overline{w}z$.
- (ii) Suppose $w\overline{z} + \overline{w}z = 0$, deduce that $Re(\frac{w}{z}) = 0$.
- (iii) Hence show that *OPAW* is a rectangle.
- (iv) Consider now that $\frac{w}{z} = ki$, where k is a real number,
 - (a) Express $\frac{w-z}{w+z}$ in the form a+ib, where a and b are real numbers.
 - (β) Hence find the expression for $\tan \theta$, where θ is the acute angle between the diagonals of *OPAW* (assuming $k \neq 1$).

Question 4. [START A NEW PAGE]

Marks

(a) Given $z = \cos \theta + i \sin \theta$, show that $(\bar{z})^n = \overline{(z^n)}$.

2

- (b) It is known that 3-i is a zero of $f(z) = z^3 + pz^2 + qz + 20$, where p and q are real numbers.
 - (i) Explain why 3+i is also a zero of f(z).

1

(ii) Factorise f(z) over the real numbers.

2

2

- (c) Let $w = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$.
 - (i) Show that w^k , where k is an integer, is a solution of $z^7 1 = 0$. 2
 - (ii) Show that $w^3 + w^2 + w + 1 + w^{-1} + w^{-2} + w^{-3} = 0$.
 - (iii) State the expression for $w^k + w^{-k}$, and hence show that
 - (a) $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} = \frac{1}{2}$.
 - (β) $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7} = \frac{1}{8}$.

END